Innovative Strategies to Mitigate Heat Stress in Broiler Chickens
Keywords:
heat stress, Welfare, genetics, nutrition, environmentAbstract
Heat stress remains a major challenge for the poultry industry, particularly in tropical regions and warm seasons, where it negatively impacts poultry welfare and performance, leading to economic losses. Although heat stress has been a long-term concern for the poultry industry, existing solutions only partially alleviate the negative impacts on overall productivity. Enhancing our understanding of this challenge and available solutions can aid in shaping future initiatives to develop more robust solutions for managing heat stress. This review explores recent strategies developed to mitigate heat stress in broiler chickens, including genetic selection, nutritional approaches such as vitamins (C, E, A, and B groups), amino acids, electrolytes, environmental modifications, and improving behavioral monitoring systems. Furthermore, we discussed the challenges in reducing the impacts of heat stress. Integrating these diverse strategies can improve poultry resilience, ensuring better welfare and sustainable production systems. Therefore, this review contributes to advancing adaptive strategies to safeguard poultry in a warming world.
Downloads
References
Apalowo OO, Ekunseitan DA, Fasina YO. Impact of heat stress on broiler chicken production. Poultry. 2024;3(2):107-28. {3_https://doi.org/10.3390/poultry3020010}
Shakeri M, Le HH. Deleterious effects of heat stress on poultry production: Unveiling the benefits of betaine and polyphenols. Poultry. 2022;1(3):147-56. {3_https://doi.org/10.3390/poultry1030013}
Shakeri M, Oskoueian E, Le HH, Shakeri M. Strategies to combat heat stress in broiler chickens: Unveiling the roles of selenium, vitamin E and vitamin C. Veterinary sciences. 2020;7(2):71. {2_32492802} {1_PMC7356496} {3_https://doi.org/https://doi.org/10.3390/vetsci7020071}
Wu H, Wong JWC. Temperature versus relative humidity: Which is more important for indoor mold prevention? Journal of Fungi. 2022;8(7):696. {2_35887451} {1_PMC9319059} {3_https://doi.org/10.3390/jof8070696}
Vandana G, Sejian V, Lees A, Pragna P, Silpa M, Maloney SK. Heat stress and poultry production: impact and amelioration. International Journal of Biometeorology. 2021;65:163-79. {2_33025116} {3_https://doi.org/10.1007/s00484-020-02023-7}
Song D, King A. Effects of heat stress on broiler meat quality. World's Poultry Science Journal. 2015;71(4):701-9. {3_https://doi.org/10.1017/S0043933915002421}
Smit B, Zietsman G, Martin R, Cunningham S, McKechnie A, Hockey P. Behavioural responses to heat in desert birds: implications for predicting vulnerability to climate warming. Climate Change Responses. 2016;3:1-14. {3_https://doi.org/10.1186/s40665-016-0023-2}
Gamba JP, Rodrigues MM, Garcia M, Perri SHV, Faria MdA, Pinto M. The strategic application of electrolyte balance to minimize heat stress in broilers. Revista Brasileira de Ciência Avícola. 2015;17(2):237-45. {3_https://doi.org/10.1590/1516-635x1702237-246}
Shakeri M, Berisha D, Martinson A, Davis J, Moussavi-Harami F. Ribonucleotide reductase mediated regulation of mitochondrial activity in the adult heart. Biophysical Journal. 2022;121(3):396a-7a. {3_https://doi.org/10.1016/j.bpj.2021.11.781}
Shakeri M, Choi J, Kong B, Zhuang H, Bowker B. Proteomics Analysis Suggests Mitochondria Disorders and Cell Death Lead to Spaghetti Meat Myopathy. Meat and Muscle Biology. 2024;8(1). {3_https://doi.org/10.22175/mmb.18205}
Shakeri M, Kong B, Zhuang H, Bowker B. Potential role of ribonucleotide reductase enzyme in mitochondria function and woody breast condition in broiler chickens. Animals. 2023;13(12):2038. {2_37370548} {1_PMC10295104} {3_https://doi.org/10.3390/ani13122038}
Shakeri M. Roles of Environment, Nutrition, and Genetics in Woody Breast Condition in Chickens. The Journal of World's Poultry Research. 2025;15(1):134-8. {3_https://doi.org/10.36380/jwpr.2025.13}
Aryal B, Kwakye J, Ariyo OW, Ghareeb AF, Milfort MC, Fuller AL, et al. Major Oxidative and Antioxidant Mechanisms During Heat Stress-Induced Oxidative Stress in Chickens. Antioxidants. 2025;14(4):471. {2_40298812} {1_PMC12023971} {3_https://doi.org/10.3390/antiox14040471}
Shakeri M, Cottrell JJ, Wilkinson S, Ringuet M, Furness JB, Dunshea FR. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals. 2018;8(10):162. {2_30257522} {1_PMC6210991} {3_https://doi.org/10.3390/ani8100162}
Shakeri M, Zulkifli I, Soleimani A, o'Reilly E, Eckersall P, Anna A, et al. Response to dietary supplementation of L-glutamine and L-glutamate in broiler chickens reared at different stocking densities under hot, humid tropical conditions. Poultry Science. 2014;93(11):2700-8. {2_25143595} {3_https://doi.org/10.3382/ps.2014-03910}
El Melki MN, Rhouma O, Barkouti A, Selmi H. Impact of Climate Change on Broiler Chicken Productivity and Reproduction. Modern Technology and Traditional Husbandry of Broiler Farming: IntechOpen; 2024{3_https://doi.org/10.5772/intechopen.1007447}
Trentin A, Talamini D, Coldebella A, Pedroso A, Gomes T. Technical and economic performance favours fully automated climate control broiler housing. British Poultry Science. 2025;66(1):63-70. {2_39249537} {3_https://doi.org/10.1080/00071668.2024.2394182}
Honig H, Haron A, Plitman L, Lokshtanov D, Shinder D, Nagar S, et al. Comparative Analysis of Broiler Housing Systems: Implications for Production and Wellbeing. Animals. 2024;14(11):1665. {2_38891712} {1_PMC11171039} {3_https://doi.org/10.3390/ani14111665}
Zmrhal V, Svoradova A, Venusova E, Slama P. The influence of heat stress on chicken immune system and mitigation of negative impacts by baicalin and baicalein. Animals. 2023;13(16):2564. {2_37627355} {1_PMC10451628} {3_https://doi.org/10.3390/ani13162564}
Ma B, He X, Lu Z, Zhang L, Li J, Jiang Y, et al. Chronic heat stress affects muscle hypertrophy, muscle protein synthesis and uptake of amino acid in broilers via insulin like growth factor-mammalian target of rapamycin signal pathway. Poultry science. 2018;97(12):4150-8. {2_29982693} {3_https://doi.org/10.3382/ps/pey291}
Mandelker L. Oxidative stress, free radicals, and cellular damage. Studies on veterinary medicine. 2011:1-17. {3_https://doi.org/10.1007/978-1-61779-071-3_1}
Xie J, Tang L, Lu L, Zhang L, Lin X, Liu H-C, et al. Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poultry science. 2015;94(7):1635-44. {2_25910904} {3_https://doi.org/10.3382/ps/pev105}
Shakeri M, Cottrell JJ, Wilkinson S, Le HH, Suleria HA, Warner RD, et al. A dietary sugarcane-derived polyphenol mix reduces the negative effects of cyclic heat exposure on growth performance, blood gas status, and meat quality in broiler chickens. Animals. 2020;10(7):1158. {2_32650461} {1_PMC7401608} {3_https://doi.org/10.3390/ani10071158}
Lin H, Decuypere E, Buyse J. Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2006;144(1):11-7. {2_16517194} {3_https://doi.org/10.1016/j.cbpa.2006.01.032}
Fellenberg M, Speisky H. Antioxidants: their effects on broiler oxidative stress and its meat oxidative stability. World's Poultry Science Journal. 2006;62(1):53-70. {3_https://doi.org/10.1079/WPS200584}
Mishra B, Jha R. Oxidative stress in the poultry gut: potential challenges and interventions. Frontiers in veterinary science. 2019;6:60. {2_30886854} {1_PMC6409315} {3_https://doi.org/10.3389/fvets.2019.00060}
Ahmad R, Yu Y-H, Hsiao FS-H, Su C-H, Liu H-C, Tobin I, et al. Influence of heat stress on poultry growth performance, intestinal inflammation, and immune function and potential mitigation by probiotics. Animals. 2022;12(17):2297. {2_36078017} {1_PMC9454943} {3_https://doi.org/10.3390/ani12172297}
Rostagno MH. Effects of heat stress on the gut health of poultry. Journal of animal science. 2020;98(4):skaa090. {2_32206781} {1_PMC7323259} {3_https://doi.org/10.1111/jpn.12990}
Juiputta J, Chankitisakul V, Boonkum W. Appropriate genetic approaches for heat tolerance and maintaining good productivity in tropical poultry production: A review. Veterinary Sciences. 2023;10(10):591. {2_37888543} {1_PMC10611393} {3_https://doi.org/10.3390/vetsci10100591}
Cedraz H, Gromboni JGG, Garcia AAP, Farias Filho RV, Souza TM, Oliveira ERd, et al. Heat stress induces expression of HSP genes in genetically divergent chickens. PLoS One. 2017;12(10):e0186083. {2_29020081} {1_PMC5636143} {3_https://doi.org/10.1371/journal.pone.0186083}
Goel A, Ncho CM, Choi Y-H. Regulation of gene expression in chickens by heat stress. Journal of animal science and biotechnology. 2021;12:1-13. {2_33431031} {1_PMC7798204} {3_https://doi.org/10.1186/s40104-020-00523-5}
Shakeri M, Le HH, Shakeri M. Role of Mitochondrial Function in Farm Animals’ Health and Production. Advances in Animal and Veterinary Sciences. 2025;13(5):1142-8. {3_https://doi.org/10.17582/journal.aavs/2025/13.5.1142.1148}
Sumanu V, Naidoo V, Oosthuizen M, Chamunorwa J. Adverse effects of heat stress during summer on broiler chickens production and antioxidant mitigating effects. International Journal of Biometeorology. 2022;66(12):2379-93. {2_36169706} {3_https://doi.org/10.1007/s00484-022-02372-5}
Shakeri M, Cottrell JJ, Wilkinson S, Zhao W, Le HH, McQuade R, et al. Dietary betaine improves intestinal barrier function and ameliorates the impact of heat stress in multiple vital organs as measured by evans blue dye in broiler chickens. Animals. 2019;10(1):38. {2_31878074} {1_PMC7023412} {3_https://doi.org/10.3390/ani10010038}
Desinguraja D. Effect of dietary supplementation of betaine hydrochloride on growth and nutrient utilization in broiler chicken: College of veterinary and animal sciences-Mannuthy, Thrissur; 2015.
Surai PF, Earle-Payne K, Kidd MT. Taurine as a natural antioxidant: From direct antioxidant effects to protective action in various toxicological models. Antioxidants. 2021;10(12):1876. {2_34942978} {1_PMC8698923} {3_https://doi.org/10.3390/antiox10121876}
Sandoghdar T, Irani M, Gharahveysi S. Taurine amino acid supplementation impacts performance, blood hematology, oxidative stress, and jejunum morphology in broiler chickens. Tropical Animal Health and Production. 2024;56(3):123. {2_38613703} {3_https://doi.org/10.1007/s11250-024-03961-9}
Wu Q, Liu N, Wu X, Wang G, Lin L. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers. Poultry Science. 2018;97(8):2675-83. {2_29788452} {3_https://doi.org/10.3382/ps/pey123}
Niu Z, Liu F, Yan Q, Li W. Effects of different levels of vitamin E on growth performance and immune responses of broilers under heat stress. Poultry science. 2009;88(10):2101-7. {2_19762862} {3_https://doi.org/10.3382/ps.2009-00220}
Kucuk O, Sahin N, Sahin K. Supplemental zinc and vitamin A can alleviate negative effects of heat stress in broiler chickens. Biological trace element research. 2003;94:225-35. {2_12972690} {3_https://doi.org/10.1385/BTER:94:3:225}
Garcia AFQM, Murakami AE, do Amaral Duarte CR, Rojas ICO, Picoli KP, Puzotti MM. Use of vitamin D3 and its metabolites in broiler chicken feed on performance, bone parameters and meat quality. Asian-Australasian journal of animal sciences. 2013;26(3):408. {2_25049804} {1_PMC4093484} {3_https://doi.org/10.5713/ajas.2012.12455}
Teymouri B, Ghiasi Ghalehkandi J, Hassanpour S, Aghdam-Shahryar H. Effect of In Ovo Feeding of the Vitamin B 12 on Hatchability, Performance and Blood Constitutes in Broiler Chicken. International Journal of Peptide Research and Therapeutics. 2020;26:381-7. {3_https://doi.org/10.1007/s10989-019-09844-0}
Aguzey HA, Gao Z, Haohao W, Guilan C, Wu Z, Chen J, et al. The role of arginine in disease prevenTion, guT microbioTa modulaTion, growTh performance and The immune sysTem of broiler chicken–a review. Annals of Animal Science. 2020;20(2):325-41. {3_https://doi.org/10.2478/aoas-2019-0081}
HAN Y, BAKER DH. Effects of sex, heat stress, body weight, and genetic strain on the dietary lysine requirement of broiler chicks. Poultry Science. 1993;72(4):701-8. {2_8479955} {3_https://doi.org/10.3382/ps.0720701}
Del Vesco AP, Gasparino E, de Oliveira Grieser D, Zancanela V, Soares MAM, de Oliveira Neto AR. Effects of methionine supplementation on the expression of oxidative stress-related genes in acute heat stress-exposed broilers. British Journal of Nutrition. 2015;113(4):549-59. {2_25614252} {3_https://doi.org/10.1017/S0007114514003535}
Livingston ML, Pokoo-Aikins A, Frost T, Laprade L, Hoang V, Nogal B, et al. Effect of heat stress, dietary electrolytes, and vitamins E and C on growth performance and blood biochemistry of the broiler chicken. Frontiers in Animal Science. 2022;3:807267. {3_https://doi.org/10.3389/fanim.2022.807267}
Borges S, Da Silva AF, Ariki J, Hooge D, Cummings K. Dietary electrolyte balance for broiler chickens exposed to thermoneutral or heat-stress environments. Poultry Science. 2003;82(3):428-35. {2_12705404} {3_https://doi.org/10.1093/ps/82.3.428}
Wen C, Leng Z, Chen Y, Ding L, Wang T, Zhou Y. Betaine alleviates heat stress-induced hepatic and mitochondrial oxidative damage in broilers. The journal of poultry science. 2021;58(2):103-9. {2_33927564} {1_PMC8076623} {3_https://doi.org/10.2141/jpsa.0200003}
Shakeri M, Choi J, Harris C, Buhr RJ, Kong B, Zhuang H, et al. Reduced ribonucleotide reductase RRM2 subunit expression increases DNA damage and mitochondria dysfunction in woody breast chickens. American Journal of Veterinary Research. 2024;1(aop):1-7. {2_38382194} {3_https://doi.org/10.2460/ajvr.23.12.0283}
Konca Y, Beyzi SB. Effects of Betaine Supplementation to Broiler Diets Under Heat Stress. Journal of Poultry Research. 2021;18(2):16-22. {3_https://doi.org/10.34233/jpr.1059735}
Sun Y, Dai S, Tao J, Li Y, He Z, Liu Q, et al. Taurine suppresses ROS-dependent autophagy via activating Akt/mTOR signaling pathway in calcium oxalate crystals-induced renal tubular epithelial cell injury. Aging (Albany NY). 2020;12(17):17353. {2_32931452} {1_PMC7521519} {3_https://doi.org/10.18632/aging.103730}
Yalcin S, Mungamuri SK, Marinkovic D, Zhang X, Tong W, Cullen D, et al. Oxidative stress-mediated activation of AKT/mTOR signaling pathway leads to myeloproliferative syndrome in FoxO3 null mice: a role for Lnk adaptor protein. Blood. 2008;112(11):509. {3_https://doi.org/10.1182/blood.V112.11.509.509}
Surai P, Kochish I, Kidd M. Taurine in poultry nutrition. Animal Feed Science and Technology. 2020;260:114339. {3_https://doi.org/10.1016/j.anifeedsci.2019.114339}
Belal S, Kang D, Cho E, Park G, Shim K. Taurine reduces heat stress by regulating the expression of heat shock proteins in broilers exposed to chronic heat. Brazilian Journal of Poultry Science. 2018;20:479-86. {3_https://doi.org/10.1590/1806-9061-2017-0712}
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, et al. Glutamine and intestinal barrier function. Amino acids. 2015;47:2143-54. {2_24965526} {3_https://doi.org/10.1007/s00726-014-1773-4}
Miwa H, Shikami M, Imai N, Suganuma K, Goto M, Mizuno S, et al. Some Leukemia Cells Are Dependent on Glutamine as Energy Source. 2010. {3_https://doi.org/10.1182/blood.V116.21.4861.4861}
Kim MinHyun KM, Kim HyeYoung KH. The roles of glutamine in the intestine and its implication in intestinal diseases. 2017. {2_28498331} {1_PMC5454963} {3_https://doi.org/10.3390/ijms18051051}
Ratriyanto A, Mosenthin R. Osmoregulatory function of betaine in alleviating heat stress in poultry. Journal of animal physiology and animal nutrition. 2018;102(6):1634-50. {2_30238641} {3_https://doi.org/10.1111/jpn.12990}
Wu J, Qiu W, Li G, Guo H, Dai S, Li G. Effects of glutamine supplementation on the growth performance, antioxidant capacity, immunity and intestinal morphology of cold-stressed prestarter broiler chicks. Veterinary Research Communications. 2025;49(3):1-13. {2_40310539} {3_https://doi.org/10.1007/s11259-025-10756-2}
Del Barrio AS, Mansilla W, Navarro-Villa A, Mica J, Smeets J, Den Hartog L, et al. Effect of mineral and vitamin C mix on growth performance and blood corticosterone concentrations in heat-stressed broilers. Journal of Applied Poultry Research. 2020;29(1):23-33. {3_https://doi.org/10.1016/j.japr.2019.11.001}
Bohler MW, Chowdhury VS, Cline MA, Gilbert ER. Heat stress responses in birds: A review of the neural components. Biology. 2021;10(11):1095. {2_34827087} {1_PMC8614992} {3_https://doi.org/10.3390/biology10111095}
Vahdatpour T, editor Effects of corticosterone intake as stress-alternative hormone on broiler chickens: performance and blood parameters. Endocrine Abstracts; 2009: Bioscientifica.
Mbiydzenyuy NE, Qulu L-A. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metabolic brain disease. 2024:1-24. {2_39083184} {1_PMC11535056} {3_https://doi.org/10.1007/s11011-024-01393-w}
Huang Y, Lang A, Yang S, Shahid MS, Yuan J. The Combined Use of Cinnamaldehyde and Vitamin C Is Beneficial for Better Carcass Character and Intestinal Health of Broilers. International Journal of Molecular Sciences. 2024;25(15):8396. {2_39125968} {1_PMC11313147} {3_https://doi.org/10.3390/ijms25158396}
Abudabos AM, Al-Owaimer AN, Hussein EO, Ali MH. Effect of natural vitamin c on performance and certain haemato-biochemical values in broiler chickens exposed to heat stress. Pakistan Journal of Zoology. 2018;50(3). {3_https://doi.org/10.17582/journal.pjz/2018.50.3.951.955}
Yamauchi R. Vitamin E: mechanism of its antioxidant activity. Food Science and Technology International, Tokyo. 1997;3(4):301-9. {3_https://doi.org/10.3136/fsti9596t9798.3.301}
Min Y, Niu Z, Sun T, Wang Z, Jiao P, Zi B, et al. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poultry Science. 2018;97(4):1238-44. {2_29452404} {3_https://doi.org/10.3382/ps/pex417}
Sadiq RK, Abrahimkhil MA, Rahimi N, Banuree SZ, Banuree SAH. Effects of dietary supplementation of Vitamin E on growth performance and immune system of broiler chickens. Journal of World's Poultry Research. 2023;13(1):120-6. {3_https://doi.org/10.36380/jwpr.2023.13}
Khalifa OA, Al Wakeel RA, Hemeda SA, Abdel-Daim MM, Albadrani GM, El Askary A, et al. The impact of vitamin E and/or selenium dietary supplementation on growth parameters and expression levels of the growth-related genes in broilers. BMC Veterinary Research. 2021;17:1-10. {2_34289844} {1_PMC8293533} {3_https://doi.org/10.1186/s12917-021-02963-1}
Fan X, Liu S, Liu G, Zhao J, Jiao H, Wang X, et al. Vitamin A deficiency impairs mucin expression and suppresses the mucosal immune function of the respiratory tract in chicks. PloS one. 2015;10(9):e0139131. {2_26422233} {1_PMC4589363} {3_https://doi.org/10.1371/journal.pone.0139131}
Verdugo P. Goblet cells secretion and mucogenesis. Annual review of physiology. 1990;52(1):157-76. {2_2184755} {3_https://doi.org/10.1146/annurev.ph.52.030190.001105}
McCullough F, Northrop-Clewes C, Thurnham DI. The effect of vitamin A on epithelial integrity. Proceedings of the Nutrition Society. 1999;58(2):289-93. {2_10466169} {3_https://doi.org/10.1017/S0029665199000403}
Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. Journal of clinical medicine. 2018;7(9):258. {2_30200565} {1_PMC6162863} {3_https://doi.org/10.3390/jcm7090258}
Goverse G, Labao-Almeida C, Ferreira M, Molenaar R, Wahlen S, Konijn T, et al. Vitamin A controls the presence of RORγ+ innate lymphoid cells and lymphoid tissue in the small intestine. The Journal of Immunology. 2016;196(12):5148-55. {2_27183576} {3_https://doi.org/10.4049/jimmunol.1501106}
Surai P, Kuklenko T. Effects of vitamin A on the antioxidant systems of the growing chicken. Asian-Australasian Journal of Animal Sciences. 2000;13(9):1290-5. {3_https://doi.org/10.5713/ajas.2000.1290}
Khan RU, Naz S, Ullah H, Khan NA, Laudadio V, Ragni M, et al. Dietary vitamin D: growth, physiological and health consequences in broiler production. Animal Biotechnology. 2023;34(4):1635-41. {2_34923931} {3_https://doi.org/10.1080/10495398.2021.2013861}
Fleet JC. Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients. 2022;14(16):3351. {2_36014856} {1_PMC9416674} {3_https://doi.org/10.3390/nu14163351}
Weaver CM, Heaney RP. Calcium in human health: Springer Science & Business Media; 2007.
Kumar R, Banga HS, Brar RS. Effects of Dietary Vitamin D3 Over-Supplementation on Broiler Chickens' Health; Clinicopathological and Immunohistochemical Characteristics. Journal of Veterinary Physiology and Pathology. 2023;2(2):20-31. {3_https://doi.org/10.58803/jvpp.v2i2.21}
Ameen MH, Muhammad SS, Ahmed SJ. Effect of B-complex vitamins in drinking water on certain physiological blood traits and productivity of broiler chickens. Biochemical & Cellular Archives. 2020;20(1).
Ouattara B, Bissonnette N, Duplessis M, Girard CL. Supplements of vitamins B9 and B12 affect hepatic and mammary gland gene expression profiles in lactating dairy cows. BMC genomics. 2016;17:1-20. {2_27526683} {1_PMC4986251}
Qaid MM, Al-Garadi MA. Protein and amino acid metabolism in poultry during and after heat stress: a review. Animals. 2021;11(4):1167. {2_33921616} {1_PMC8074156} {3_https://doi.org/10.3390/ani11041167}
Sakomura N, Ekmay R, Mei S, Coon C. Lysine, methionine, phenylalanine, arginine, valine, isoleucine, leucine, and threonine maintenance requirements of broiler breeders. Poultry science. 2015;94(11):2715-21. {2_26500271} {3_https://doi.org/10.3382/ps/pev287}
Bouyeh M. Effect of excess lysine and methionine on immune system and performance of broilers. Ann Biol Res. 2012;3(7):3218-24.
Lee M, Park H, Heo JM, Choi HJ, Seo S. Multi-tissue transcriptomic analysis reveals that L-methionine supplementation maintains the physiological homeostasis of broiler chickens than D-methionine under acute heat stress. PLoS One. 2021;16(1):e0246063. {2_33503037} {1_PMC7840013} {3_https://doi.org/10.1371/journal.pone.0246063}
Zhang J, Bai K, Su W, Wang A, Zhang L, Huang K, et al. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poultry science. 2018;97(4):1209-19. {2_29438543} {3_https://doi.org/10.3382/ps/pex408}
Bortoluzzi C, Rochell S, Applegate T. Threonine, arginine, and glutamine: Influences on intestinal physiology, immunology, and microbiology in broilers. Poultry Science. 2018;97(3):937-45. {2_29294123} {3_https://doi.org/10.3382/ps/pex394}
Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. Animal Nutrition. 2024;18:145-53. {2_39257858} {1_PMC11385068} {3_https://doi.org/10.1016/j.aninu.2024.03.018}
Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino acids. 2018;50:29-38. {2_28929384} {3_https://doi.org/10.1007/s00726-017-2490-6}
Iqbal I, Wilairatana P, Saqib F, Nasir B, Wahid M, Latif MF, et al. Plant polyphenols and their potential benefits on cardiovascular health: A review. Molecules. 2023;28(17):6403. {2_37687232} {1_PMC10490098} {3_https://doi.org/10.3390/molecules28176403}
Serreli G, Deiana M. Role of dietary polyphenols in the activity and expression of nitric oxide synthases: A review. Antioxidants. 2023;12(1):147. {2_36671009} {1_PMC9854440} {3_https://doi.org/10.3390/antiox12010147}
Yang C, Luo P, Chen S-j, Deng Z-c, Fu X-l, Xu D-n, et al. Resveratrol sustains intestinal barrier integrity, improves antioxidant capacity, and alleviates inflammation in the jejunum of ducks exposed to acute heat stress. Poultry science. 2021;100(11):101459. {2_34614430} {1_PMC8498463} {3_https://doi.org/10.1016/j.psj.2021.101459}
Saracila M, Panaite TD, Papuc CP, Criste RD. Heat stress in broiler chickens and the effect of dietary polyphenols, with special reference to Willow (Salix spp.) bark supplements—A review. Antioxidants. 2021;10(5):686. {2_33925609} {1_PMC8146860} {3_https://doi.org/10.3390/antiox10050686}
Mazur-Kuśnirek M, Antoszkiewicz Z, Lipiński K, Kaliniewicz J, Kotlarczyk S. The effect of polyphenols and vitamin E on the antioxidant status and meat quality of broiler chickens fed low-quality oil. Archives Animal Breeding. 2019;62(1):287-96. {2_31807639} {1_PMC6852880} {3_https://doi.org/10.5194/aab-62-287-2019}
Ahmad T, Sarwar M. Dietary electrolyte balance: implications in heat stressed broilers. World's Poultry Science Journal. 2006;62(4):638-53. {3_https://doi.org/10.1017/S0043933906001188}
Kellum JA. Determinants of blood pH in health and disease. Critical care. 2000;4:1-9. {2_11094495} {1_PMC137329} {3_https://doi.org/10.1186/cc642}
Kariev AM, Green ME. Voltage gated ion channel function: gating, conduction, and the role of water and protons. International journal of molecular sciences. 2012;13(2):1680-709. {2_22408417} {1_PMC3291986} {3_https://doi.org/10.3390/ijms13021680}
Mushtaq M, Pasha T, Mushtaq T, Parvin R. Electrolytes, dietary electrolyte balance and salts in broilers: an updated review on growth performance, water intake and litter quality. World's Poultry Science Journal. 2013;69(4):789-802. {3_https://doi.org/10.1017/S0043933913000846}
Oloyo A. The use of housing system in the management of heat stress in poultry production in hot and humid climate: a review. 2018.
Bhoyar A. Housing and management strategies to mitigate heat stress in layers.
Glatz P, Pym R. Poultry housing and management in developing countries. Poultry Development Review; FAO: Rome, Italy. 2013:24-8.
Yadav S, Choudhary O. Poultry Housing System and Management. of the Book: Advancement and Innovations in Agriculture.207.
Mascarenhas NMH, da Costa ANL, Pereira MLL, de Caldas ACA, Batista LF, Andrade ELG. Thermal conditioning in the broiler production: challenges and possibilities. Journal of Animal Behaviour and Biometeorology. 2020;6(2):52-5. {3_https://doi.org/10.31893/2318-1265jabb.v6n2p52-55}
Jones RB. Fear and adaptability in poultry: insights, implications and imperatives. World's Poultry Science Journal. 1996;52(2):131-74. {3_https://doi.org/10.1079/WPS19960013}
Hassan A, Reddy P. Early age thermal conditioning improves broiler chick's response to acute heat stress at marketing age. 2012.
Yalçın S, Önenç A, Özkan S, Güler H, Siegel P. Meat quality of heat stressed broilers: effects of thermal conditioning at pre-and-postnatal stages. 2005.
Ben Sassi N, Averós X, Estevez I. Technology and poultry welfare. Animals. 2016;6(10):62. {2_27727169} {1_PMC5082308} {3_https://doi.org/10.3390/ani6100062}
Cilulko J, Janiszewski P, Bogdaszewski M, Szczygielska E. Infrared thermal imaging in studies of wild animals. European Journal of Wildlife Research. 2013;59:17-23. {3_https://doi.org/10.1007/s10344-012-0688-1}
George AS, George AH. Optimizing poultry production through advanced monitoring and control systems. Partners Universal International Innovation Journal. 2023;1(5):77-97.
Tavárez MA, Solis de los Santos F. Impact of genetics and breeding on broiler production performance: a look into the past, present, and future of the industry. Animal Frontiers. 2016;6(4):37-41. {3_https://doi.org/10.2527/af.2016-0042}

Downloads
Published
Issue
Section
License
Copyright (c) 2024 Majid Shakeri (Corresponding Author); Amin Khezri , Hieu Huu Le (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.