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Staphylococcus aureus causes staphylococcal food poisoning and several 

difficult-to-treat infections in humans. The occurrence and dissemination of 

methicillin-resistant S. aureus (MRSA) is crucial and well documented in various 

studies. MRSA is an increasing public health concern worldwide. In addition, S. 

aureus is resistant to commonly used antibiotics in poultry farms, which is a 

concern to public health because of the transmission of this bacteria after 

consuming poultry meat. Hence, these highlight the significance of antimicrobial 

and enterotoxigenic monitoring of S. aureus in food chains. Clostridium 

perfringens is a ubiquitous spore-forming anaerobic pathogen that causes broilers' 

clinical or subclinical necrotic enteritis. At the same time, in humans, it is the 

causal agent of foodborne diseases, frequently related to the consumption of 

chicken meat. Moreover, enterotoxin-producing C. perfringens has high zoonotic 

potential as well as serious public health concerns due to the emanation of 

foodborne intoxication. The high diversity and occurrence of C. perfringens and 

S. aureus strains indicate the need to carry out various plans to control C. 

perfringens and S. aureus associated with foodborne infections. Meanwhile, 

clinical importance is assisting in understanding the occurrence, source, reservoir, 

and evolution of antibacterial resistance of C. perfringens and S. aureus to 

establish the control of these pathogens. 
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1 Introduction 

taphylococcus, a genus of Gram-positive bacteria, 

encompasses several species, with Staphylococcus 

aureus and Staphylococcus epidermidis being the most 

commonly implicated in poultry infections. These bacteria 

can cause a spectrum of diseases ranging from mild skin 

infections to more severe systemic diseases in the poultry 

population. Staphylococci are commonly found in the 

environment, including animals' and humans' skin and 

mucous membranes (1, 2). While many species of 

Staphylococcus exist, Staphylococcus aureus and 

Staphylococcus epidermidis are among the most frequently 

encountered in poultry environments (3-5). These bacteria 

can lead to various bird infections, including skin and soft 

tissue infections, respiratory tract infections, and systemic 

diseases (2, 3, 6, 7). Staphylococcus infections cause 

significant challenges to the poultry industry worldwide, 

affecting bird health and productivity (6, 8, 9). Diverse 

factors, including management practices, environmental 

conditions, and other predisposing diseases, influence the 

occurrence of Staphylococcus infections in poultry. In 

commercial poultry production systems, high stocking 

density, suboptimal or low ventilation, and incomplete 

sanitation and biosecurity can provide favorable conditions 

for the proliferation and transmission of Staphylococcus spp. 

among birds (7, 10, 11). Additionally, stressors such as 

transportation, handling, and high-density housing can 

compromise the immune function of poultry, increasing 

their susceptibility to bacterial infections (4, 12, 13).  

Staphylococcal infections in poultry manifest in various 

forms, including dermatitis, cellulitis, bumblefoot, 

omphalitis (yolk sac infection), arthritis, and respiratory tract 

infections. These infections can lead to significant economic 

losses for poultry producers because of decreased growth 

rates, impaired feed conversion efficiency, increased 

mortality rates, and costs related to veterinary treatments and 

interventions (8, 9, 11, 14, 15). Moreover, Staphylococcus 

aureus, in particular, poses a notable public health concern 

due to its zoonotic potential (7, 9, 15-17). Staphylococcus 

aureus infection in human occurs through direct contact with 

infected birds or their contaminated products, leading to a 

range of infections, including skin and soft tissue infections, 

respiratory tract infections, and foodborne illnesses (3, 6, 15, 

18). Furthermore, the emergence of antibiotic-resistant 

Staphylococcus strains in poultry populations raises 

additional concerns regarding the effectiveness of antibiotic 

therapies for both animal and human health (9, 15, 18-23). 

Effective prevention and control strategies are paramount 

because of the multifaceted nature of Staphylococcus 

infections in poultry (24, 25). This necessitates 

implementing comprehensive biosecurity measures, 

including strict hygiene protocols, routine surveillance, 

appropriate antibiotic stewardship, and management 

practices to minimize stress and optimize flock health (6, 9, 

15, 16, 25-28). By investigating these factors, poultry 

producers can mitigate the impact of Staphylococcus 

infections on bird welfare, productivity, and public health, 

thereby ensuring the sustainability and profitability of the 

poultry industry. Staphylococcus aureus (S. aureus) is a 

significant zoonotic pathogen that can cause disease in 

humans and animals (3, 29). It is widely distributed in nature 

and is present in air, water, and feed; it also exists on the 

surface of the human body, in the nasal cavity, on animal fur, 

and in the digestive tract, among other sites. S. aureus has 

been responsible for several infectious diseases, including 

tissue and skin infections, pneumonia, sepsis, mastitis, 

arthritis, and soft tissue infections (3, 5, 30-32).  

Clostridium species are Gram-positive, rod-shaped 

bacteria that thrive in anaerobic conditions. A hallmark of 

these bacteria is their ability to form endospores, which are 

highly resistant to environmental stresses, including heat, 

desiccation, and disinfectants (33-35). This spore-forming 

capability allows Clostridium to persist in the environment, 

contributing to the difficulty in controlling infections within 

poultry systems. They are commonly found in soil, decaying 

organic matter, and the gastrointestinal tract of animals, 

where they play roles ranging from benign commensals to 

serious pathogens (34, 36). Clostridium infections represent 

a significant challenge in poultry production, affecting the 

health and productivity of commercial poultry flocks 

worldwide (37, 38). The causative agents are various species 

within the genus Clostridium, anaerobic, spore-forming 

bacteria known for their pathogenic potential and 

environmental resistance (34, 39). These infections can lead 

to severe diseases such as necrotic enteritis, gangrenous 

dermatitis, botulism, and ulcerative enteritis, each 

characterized by distinct clinical manifestations and 

substantial economic impacts (34, 40-42). The transmission 

of Clostridium infections occurs primarily through the 

ingestion of spores from contaminated feed, water, or litter. 

These spores can germinate and proliferate in the gut under 

favorable conditions, such as disrupted gut flora, dietary 

changes, or environmental stress. Horizontal transmission 

within flocks is common, especially in intensive production 

systems with high stocking densities (34, 43). Clostridium 

S 
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infections such as Necrotic Enteritis (NE) have remarkable 

economic implications due to high mortality rates during 

outbreaks, which result in substantial financial losses, poor 

feed efficiency, lower growth rates, reduced egg production, 

increased expenses related to medications, veterinary care, 

and enhanced biosecurity measures and infected birds suffer 

from severe symptoms, raising ethical and welfare concerns. 

Clostridial diseases in poultry production have profound 

economic and welfare impacts, and high mortality rates 

during outbreaks can lead to substantial financial losses due 

to loss of production and the need for carcass disposal (34, 

38, 44). Meanwhile, infected birds often exhibit poor feed 

efficiency, reduced growth rates, and lower egg production, 

affecting overall productivity and profitability (45-47). 

Other implications of clostridial infections in the poultry 

industry are increased expenses for medications, veterinary 

care, and enhanced biosecurity measures, contributing to the 

economic burden and significant suffering in affected birds, 

leading to ethical considerations and potential regulatory 

scrutiny (38, 48).   

2 Prevalence and Risk Factors  

Staphylococcus species are ubiquitous in poultry 

environments, with S. aureus being the most clinically 

significant. Other species, such as S. epidermidis and S. 

hyicus, are also encountered, although they are less pathogenic 

(16, 49, 50). Various factors, including geographical region, 

type of poultry, age, and production stage, can influence the 

prevalence of Staphylococcus species in poultry. Various 

studies demonstrated a widespread prevalence of S. aureus 

and other Staphylococcus species in poultry farms across 

various regions, often exceeding 50% in some areas. A global 

review reported that S. aureus prevalence ranges from 20% to 

80% in commercial poultry operations. (2, 6, 18, 51-53). Due 

to their intensive farming conditions, broilers often exhibit 

higher prevalence rates of Staphylococcus infections. In 

another study, several studies reported 30% to 80% 

prevalence rates depending on farm management and 

biosecurity practices (5, 9, 16, 30, 54). Researchers reported 

that the carriage rate of S. aureus among broilers on all farms 

was 84.8%, whereas it was 84% among farm workers. The 

differences in the incidence rates of S. aureus in broilers and 

broilers farm workers in all farms were statistically non-

significant (55). In poultry, the most common type of infection 

is tenosynovitis and arthritis (7, 56). Staphylococcus 

infections occur mainly during the following four periods of a 

breeder’s life. Omphalitis and femoral head necrosis often 

relate to egg or hatchery contamination and minor surgeries 

during the first two weeks of life. Other lesions related to the 

staphylococcus infection are infected hock and stifle joints 

secondary to coccidiosis or harsh vaccine reactions. The 

milder forms of gangrenous dermatitis are generally caused by 

S. aureus (7, 57, 58). The organism must enter the circulatory 

system to cause disease; thus, any injury or lesion increases 

the possibility of disease. The most evident route of infection 

is through a break or injury in the skin, respiratory tract, and 

gut (7, 9, 58, 59). S. aureus has been able to adapt rapidly to 

several antibiotics, leading to the emergence of methicillin-

resistant Staphylococcus aureus (MRSA). MRSA can resist 

various types of antibiotics, like β-lactams and others. After a 

decade, MRSA had been found in many countries that had 

been considered as an endemic in the mid-1970s (1, 6, 18, 60-

65). The detection frequency of 25.9% on turkey farms relates 

to the results of the National Zoonosis Monitoring 2010, 

which found that 19.6% of farms were positive (7, 66, 67). In 

a regional study in the southwest of Germany, researchers 

found that 90% of the turkey farms were positive for MRSA 

(68-70). Limited data on the prevalence and epidemiology of 

MRSA in broiler flocks have been available so far. Out of 384 

dust and fecal samples originating from broiler fattening 

farms, only 0.7% were suspected to be MRSA positive, and 

they discovered a significant proportion of diseased flocks 

(55, 71, 72). Other studies in different countries also had 

varying results, with 35% of flocks positive at slaughter in 

Denmark and 4 of 50 flocks positive in the Netherlands (61, 

62, 65). In another study, the researchers found that 2 of 14 

Belgian farms were positive for MRSA by sampling five 

broiler chickens at each farm (65, 73). Meanwhile, MRSA has 

been detected in chickens and turkeys from farms and 

slaughterhouses (12, 60-62, 74-76). LA-MRSA is a distinct 

spread of specific MRSA clones (ST-398) that colonizes 

various food animal species (including livestock and poultry) 

and may be associated with human infection. Risk groups and 

modes of transmission of livestock-associated MRSA (LA-

MRSA) include persons with direct contact with MRSA 

colonized or infected livestock, such as veterinarians, meat 

vendors, farmers, workers at slaughterhouses, contact with 

many different animal products (62, 64, 77). LAMRSA 

isolates have been detected in meat in different geographic 

areas, raising concerns about the possibility of transmission of 

MRSA from the farm to the fork (12, 61, 62, 76). However, 

human MRSA strains (human-associated and community-

associated MRSA) have also been discovered in poultry meat, 

indicating inappropriate hygienic and sanitary conditions 
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during slaughter or meat processing from poultry meat (6, 62, 

78). 

C. perfringens could cause reduced production 

performance in chickens. The intestinal function is to attain 

optimal feed conversion ratio (FCR) in which several factors 

reduce this index, such as the necrotic gut lesion and abnormal 

clostridium dominance in gut microflora together with 

clostridium toxins, all this reduced productivity (45, 79-81). 

Immunosuppression predisposes poultry, especially broiler 

chickens, to NE; immunosuppression likely changes the 

intestinal environment and commensal flora population (82-

84). The recent shift to no antibiotics ever production has 

elevated the prevalence of Clostridium-related disease. The 

removal of antibiotic growth promotors (AGPs) has increased 

the mortality in no antibiotic ever broiler production by 25 to 

50%, compared to conventional production (38, 85). With a 

high incidence of clostridial disease and mortality rates, it is 

vital to comprehend the prevalence and virulence 

specifications of C. perfringens within broiler flocks. Most 

diseases caused by C. perfringens are mediated by one or 

more toxins (86). C. perfringens is classified into seven 

toxigenic types, A to G, based on the production of six major 

toxins: alpha (α), beta (β), epsilon (ε), iota (ι), enterotoxin 

(CPE), and NetB (86-88). All toxigenic types of C. 

perfringens produce the α toxin encoded by the cpa gene. 

Additionally, type B produces β and ε toxin; type C produces 

β toxin; type D produces ε toxin; type E produces ι toxin; type 

F produces CPE, and type G produces NetB (38, 79, 80, 82, 

84, 86-88). One or more C. perfringens toxins mediate these 

diseases. Gastrointestinal infections in humans and animals 

have been indicated to be related to C. perfringens type C. In 

contrast, other toxins have been demonstrated to cause disease 

in humans or animals, but not both. Type A is the most 

frequent ofseven C. perfringens toxinotypes. However, type F 

is the one that causes food-related poisoning in humans (38, 

80, 89). NE occurs in broiler chickens between the ages of 2 

to 6 weeks and in layers of 12–24 weeks due to the reduced 

titer of maternal antibodies to the clostridial infections with 

clinical or subclinical manifestations. Outbreak of NE is 

frequently detected in broiler flocks kept on deep litter, which 

may be a source of infection (34, 41, 43, 82, 90-93). Clinical 

NE in poultry is identified by sudden increased mortality 

without premonitory signs, whereas a subclinical form is 

frequently related to poor weight gain and feed conversion 

ratio (47, 88, 91). The development of NE is not exclusively 

created by infection with C. perfringens; predisposing factors, 

including diets high in non-starch polysaccharide grains and 

fish meal protein, as well as protozoal infection, have been 

demonstrated to have an impact on the incidence of NE (93-

95). Over the years, antimicrobial agents have been used as 

growth promoters known as antibiotics growth promoters 

(AGP) and to control NE in poultry (82, 90, 92, 94-97). 

However, the prohibition of the usage of AGPs by the 

European Union in 2006, strict regulations, and voluntary 

withdrawal of AGPs to struggle with antibiotic-resistant 

bacteria strains and high consumer demand for antibiotic-free 

meat had led to the recurrence of NE in poultry (82, 92-94).  

3 Antimicrobial Resistance 

Methicillin, a new antibiotic with resistance to β-

lactamase, was developed two decades later, in 1960, and in 

less than two years, the first methicillin-resistant S. aureus 

(MRSA) appeared. The term LA-MRSA is distinguished by 

the spread of certain MRSA clones (ST-398) that colonize 

various food animal species (including livestock and poultry) 

and may be associated with human infection (62-64). Risk 

groups and modes of transmission of livestock-associated 

MRSA (LA-MRSA) include persons with direct contact with 

MRSA colonized or infected livestock, such as veterinarians, 

meat vendors, farmers, workers at slaughterhouses, contact 

with many diverse animal products and transporters of 

livestock (60-62, 64, 98). S. aureus can adapt rapidly even 

during selective antimicrobial pressure, which caused the 

emergence of methicillin-resistant S. aureus (MRSA). 

Resistance to methicillin and other b-lactam antibiotics is due 

to the mecA gene or its mecC homolog, located in a mobile 

genetic element called the staphylococcal chromosomal 

cassette (65, 76, 99). MRSA has become a threat to public 

health because, globally, it causes infections associated with 

hospitals, general communities, and LA-MRSA (100, 101). 

Various antimicrobial agents such as β-lactamases, 

macrolides, aminoglycosides, and tetracyclines are widely 

used in poultry flocks for the prevention and treatment of 

staphylococci and other infections, which result in the 

development and emergence of drug-resistant strains of 

bacterial microorganisms (7, 22, 64, 102, 103). Another 

significant challenge facing human health is antibiotic 

resistance. The occurrence of antibiotic-resistant foodborne 

pathogens is also increasing because of their excessive use in 

human and animal treatments (14, 15, 18, 23, 104). Moreover, 

the determinant factors of antibiotic resistance can be 

transferred to other pathogenic bacterial agents, which can 

compromise the treatment of serious bacterial infections and, 

thus, create a great threat to public health (14, 23, 50, 99, 103, 

104). 
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The prevalence of MRSA in animal samples from the 

prescreened farms averaged between 61.7% and 80% in 

turkeys and 50% and 54.2% in boilers, respectively. In a 

study, researchers identified 0% and 28% MRSA-positive 

animals on three broiler farms (51, 105). Other studies 

revealed a prevalence of only 6.9% in chickens at abattoirs 

and 4.4% after investigating pooled throat swabs from 

multiple broiler farms (6, 64, 106). In analyzing dust and fecal 

samples from broiler farms in Germany, only 0.7% were 

suspected to be MRSA-positive (71). Studies in other 

European countries also had different results, with 35% of 

flocks positive at slaughter and 8% during rearing (18, 63, 73, 

99, 100, 107). In another study, the researchers found that 2 of 

14 Belgian farms were positive for MRSA by sampling five 

broilers at each farm (108). Several studies demonstrated 

more resistance of S. aureus isolates to ciprofloxacin, 92.9% 

and 50% resistance of tetracycline and ampicillin, 

respectively. Meanwhile, other researchers reported 100% 

resistance in S. aureus isolates from poultry meat against 

tetracycline and 61.5% against methicillin in Nigeria (10, 

109). They stated 46.2% and 15.4% resistance against 

chloramphenicol and ciprofloxacin, whereas 38.5% against 

gentamicin and sulfamethoxazole/trimethoprim. Multidrug-

resistant S. aureus has been reported several times (78, 110, 

111). In addition, several studies reported 59.2% tetracycline 

to S. aureus isolates from ready-to-eat food (112-114). 

Extensive antibiotic use is thought to be the major cause of 

drug resistance in foodborne pathogens. The high rate of 

antimicrobial susceptibility may be due to the low use of these 

antimicrobials in layer breeders compared with broiler 

breeders or broilers. Although S. aureus is implicated in 

human food poisoning, most poultry strains do not produce 

the enterotoxins that cause human foodborne disease (18, 107, 

108, 110, 111, 113, 115). 

With extensive antimicrobial agents, especially antibiotics, 

S. aureus resistance has indicated an increasing trend recently, 

which brings great challenges for the clinical treatment of 

infectious diseases (18, 50, 100, 104, 116). MRSA is a 

remarkable concern that causes severe morbidity and 

mortality worldwide (14, 18, 30, 31, 50, 51, 60, 61, 63, 64, 73, 

99, 100, 104, 115, 116). More and more molecular 

epidemiological studies have demonstrated that there are 

diverse sources of MRSA strains, including hospital-

associated MRSA (HA-MRSA), community-associated 

MRSA (CA-MRSA), and LA-MRSA, indicating that 

continuous surveillance and screening are essential to 

discovering modifications in the epidemiology of MRSA 

infection in humans and animals (18, 73, 99, 107, 117). S. 

aureus is an opportunistic pathogen capable of causing severe 

disease to farm workers and domesticated animals (14, 55, 

118). S. aureus is prone to obtaining resistance to many kinds 

of antibiotics. In the early 1940s, the concept of resistance of 

S. aureus strains to antibiotic therapy was raised, and the 

prevalence of antibiotic resistance has significantly increased 

in recent decades because of the excessive use of antibiotics 

and the prescription used for therapeutics of diseases (14, 55, 

118). Since 1959, penicillin-resistant S. aureus infections have 

been successfully treated with methicillin. However, in 1961, 

several reports from the United Kingdom demonstrated that S. 

aureus strains had been resistant to methicillin. This was the 

first discovery of the methicillin-resistant S. aureus strains 

(18, 106). S. aureus isolated from poultry has become a 

serious zoonotic risk factor on a global scale for the farm 

workers groups who handle or live in close proximity to 

chickens (6, 13, 55, 60, 62). An increasing series of evidence 

proved that livestock workers are a high-risk population for 

LA-MRSA carriage because of regular close contact with 

animals, especially in farm-intensive areas (60, 99). The 

primary result was LA-MRSA colonization among study 

participants who had close contact with livestock, identified 

by LA-MRSA strain isolated from nasal, oropharyngeal, or 

axillary samples (18, 60, 61, 64, 73, 119, 120). The risk of 

developing LA-MRSA colonization among livestock workers 

and veterinarians is also influenced by other risk factors, 

including livestock density and the type of farm or stage of 

animal production, history of antimicrobial consumption, 

hospital admission, working on farms with MRSA-positive 

animals, flock size and sanitary conditions (101, 119-121). 

Currently, MRSA strains have been identified using the 

biochemical test to detect the phenotypical characterization of 

MRSA, which showed resistance to all the antibiotics that 

have been produced.  

A very significant challenge is the continuous antibiotic 

resistance of C. perfringens strains. Not only is antimicrobial 

use associated with high antibiotic resistance among bacterial 

microorganisms, but selection due to utilization of antibiotics 

may also contribute to a positive or negative relationship with 

virulence determinants (39, 122, 123). Resistance and 

virulence may not frequently be independent properties, and 

their relationship may play a vital role in the pathogenesis of 

C. perfringens infection (38, 80, 122, 123). AGPs were the 

major intervention strategy against Clostridium infections in 

commercial broilers (38, 41, 44, 80, 87, 124, 125). This 

therapeutic protocol supports birds by direct bactericidal and 

bacteriostatic effects, modifying the gut microbiota, 

decreasing GIT inflammation, and improving the overall 
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physical health of the GIT (45, 47, 80, 86, 112, 122, 126). 

However, due to concerns about occurrence of antimicrobial 

resistance, poultry farmers and veterinarians have limited their 

antibiotic usage. In 2011, the annual Agricultural Resource 

Management Survey inferred that 48% of grow-out operations 

raised poultry, especially broilers, without antibiotics usage 

and only provided antibiotics when birds suffered from 

bacterial infections (123, 126-129). Recently, it was estimated 

that more than 50% of the industry raises broilers without 

antibiotics. This type of broiler production is referred to as no 

antibiotics ever (NAE). Broilers reared within NAE facilities 

cannot receive antimicrobials in feed, water, supplementation, 

or injection at any part of the bird’s lifetime. (130-132). The 

potential increase in the antimicrobial resistance of C. 

perfringens has occurred recently, with several reports 

declaring that most C. perfringens were multidrug-resistant 

(MDR) isolates (39, 133, 134). The resistance to tetracycline 

through TetA(P) protein, which regulates tetracycline active 

efflux, was common. In addition, over 50% of C. perfringens 

isolates were resistant to lincomycin. However, 25% of this 

resistance was related to the expression of the lnu gene (39, 

134, 135). It should be noted that higher minimum inhibitory 

concentration (MIC) values of amoxicillin and ciprofloxacin 

were recorded due to the presence of the β-lactamase (bla) and 

quinolone (qnr) resistance genes, respectively. In the same 

context, the macrolide-resistant C. perfringens may act as 

reservoirs for the erm gene, which assists in its conjugal 

transfer (39, 122, 123, 135-138). 

Previous studies have shown that tetracycline resistance is 

the most common antimicrobial resistance phenotype 

observed in C. perfringens and that it is related to the use of 

antibiotics for the treatment and as growth promoters in food 

animals. As a result, antimicrobial resistance of C. perfringens 

to tetracycline, lincomycin, and erythromycin has increased 

significantly over the past three decades (20, 28, 39, 45, 111, 

122, 123, 139, 140). C. perfringens induces a toxico-

infectious foodborne sickness, in which infection by viable 

bacterial cells and their toxins plays a significant role in 

creating gastroenteritis in the host (34, 141). C. perfringens 

infections cause gas gangrene, necrotizing enteritis, and food 

poisoning in humans and animals. In order to minimize and 

decrease the economic losses induced by these infections, 

many antimicrobials, such as ampicillin, tetracycline, 

chloramphenicol, metronidazole, and imipenem, have been 

used preventively in the livestock industry (19, 22, 39, 80, 89, 

103, 134, 135). Despite increasing awareness of the 

importance of combating antimicrobial resistance to improve 

public health, resistance of C. perfringens from various 

sources to different antibiotics has yet to be actively 

investigated. The long-term and frequent use of antibiotics in 

the livestock and poultry industry has increased antimicrobial 

resistance in C. perfringens, compromised the efficacy of 

antibiotics, and generated great difficulties in clinical 

treatment (20, 39, 122, 139, 140). Probiotics are extensively 

used microorganisms to deal with particular diseases such as 

avian subclinical NE. The efficacy of probiotics belonging to 

the genera Bacillus, Lactobacillus, Enterococcus, 

Bifidobacteria, and Saccharomyces has been assessed both in 

vivo and in vitro (80, 92, 96). One of these studies reported a 

meta-analysis that included independent trials performed in 

different countries simultaneously, demonstrating in large-

scale assessments that the supplementation of probiotics like 

B. subtilis remarkably elevates productive parameters and 

decreases the histological damage caused by C. perfringens 

(44, 92, 124, 125, 132, 134, 136, 142-144). The composition 

of the microbiome associated with broilers has been 

associated with improved production efficiency, representing 

that the use of probiotics demonstrated a viable alternative to 

avoid antibiotics in diets. It has been suggested that probiotics 

may beneficially affect the structure of the host gut microbiota, 

consequently improving the growth and survival of farm 

organisms (44, 92, 125, 128, 132, 136, 142-144). In addition 

to probiotics, other strategies, including prebiotics, synbiotics, 

organic acids, phytogenic additives, and dietary modifications 

and enzymes, can be used for the prevention and control of C. 

perfringens in the poultry industry and, more importantly, 

avoid the occurrence of antibiotic resistance.  

4 Public Health Impacts 

Foodborne diseases (FBDs) and poisoning are the 

widespread and great public health challenges of the modern 

world. Both developed and developing countries are widely 

affected by foodborne infections. FBDs impact human health 

and well-being and have economic effects on individuals and 

countries. Food poisoning outbreaks primarily comprise meat 

and meat products, but other food items, such as milk, may 

also be contaminated (145-147). FBDs are pathological cases 

created by the ingestion of food containing biological, 

chemical, or physical hazards. Multiple pathogenic bacteria 

can cause FBD, among which Salmonella spp., 

Staphylococcus aureus (S. aureus), and C. perfringens are the 

most common pathogenic bacteria in poultry-source foods. (8, 

139, 148).  

Staphylococcal food poisoning (SFP) is in relationship 

with emetic activity, sepsis-related infections, pneumonia, and 
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toxic shock syndrome (TSS). S. aureus has been frequently 

isolated from many foodstuffs, such as dairy products and 

meat. Therefore, it has been accounted as the third largest 

cause of food-associated disorders worldwide (128, 139, 145). 

In addition, it is one of the major public concerns since the 

treatment protocol for infections is a challenge when facing 

resistance, contributing to the evolution of MRSA. MRSA 

from poultry meat poses a public health risk that can be 

transmitted to humans by handling or consuming 

contaminated poultry meat (127, 139, 140). MRSA in poultry 

and poultry products is a concern to the poultry industry 

because of the risk to human health (13, 50, 78, 115, 147, 149, 

150). The most important concern is the production of 

staphylococcal enterotoxins by MRSA strains, which can 

induce staphylococcal foodborne illness (18, 51, 62, 73, 100, 

107). Raw meat handling, cross-contamination, and 

undercooked meat consumption may lead to MRSA 

infections. The epidemiology of MRSA in poultry has gained 

significance in recent years because of the growing demand 

for high-quality food and improved food safety (151, 152). 

This demand has led to increased poultry production, 

processing, and distribution of products, facilitating MRSA 

creation and spreading all over the food production chain. 

The spread of MRSA in livestock is a serious public health 

threat. MRSA occurs among livestock animals like pigs, 

cattle, poultry, and companion animals. Interestingly, LA-

MRSA also emerged among humans, demonstrating a 

zoonotic transmission from animals to humans (61, 62, 147, 

153). Working and/or living on an MRSA-positive broiler 

farm was identified as a risk factor for acquiring MRSA. 

According to previous studies conducted in European 

countries, approximately 35% of slaughterhouses were 

MRSA-positive. On the other hand, the researchers recorded 

a 28% prevalence of MRSA from poultry farms in Malaysia 

(51, 62, 154). Furthermore, they isolated MRSA from turkey 

flocks in the Netherlands at 62-80% (6, 73). In Germany, 

transmission of MRSA from livestock to humans occurred 

mainly from occupational animal contact (61, 62, 151). 

Among 466 persons tested for MRSA in Dutch poultry 

slaughterhouses, 26 individuals were positive, which specifies 

a higher exposure risk to MRSA compared to the non-

occupational Dutch people (155). Furthermore, MRSA has 

been discovered in various meat products, including turkey, 

raw chicken, veal, pork, mutton or lamb, beef, and rabbit (3, 

18, 154, 156-158). Many authors have referred to detecting 

MRSA in chickens, cattle, pigs, and dogs. Along with creating 

cultural awareness of humans worldwide, consumers tend to 

eat low-fat with high minerals, vitamin contents, good quality 

protein, quickly prepared, and low expensive chicken meat 

compared to the other types of meat. However, at the same 

time, human exposure to food poisoning was increased by 

consuming contaminated chicken meats with MRSA (3, 9, 14, 

18, 64, 73, 158). 

Evaluating S. aureus prevalence in poultry flocks is 

important for future risk prediction in poultry production and 

related occupational risks. Hence, understanding the possible 

outbreaks in antibiotic resistance through a sustainable 

surveillance program of the antimicrobial resistance profile of 

S. aureus simultaneously with the medical and veterinary 

conditions is necessary for the appropriate improvement of S. 

aureus control (18, 149, 154). Regular genotypic analysis of 

S. aureus from human and chicken origin is needed to 

discover the relationship between them due to the potential for 

transmitting MRSA to humans by consuming poultry or any 

by-product containing such S. aureus strains. Despite 

decreased antimicrobial usage in European animal production 

in recent years, the prevalence of MRSA in farm animals has 

not reduced (61, 108). It is, therefore, likely that MRSA 

remains in other reservoirs, such as in humans (i.e., farm 

workers and veterinarians). Strategies involving reducing the 

reliance on antibiotic usage and the frequent change of 

antibiotic classes should be considered for reducing MRSA 

levels in highly contaminated farms. Control and treatment 

strategies such as strict preventive biosecurity measures, 

selective probiotic feeding, and MRSA eradication programs 

should be used to prevent MRSA outbreaks on a farm, reduce 

MRSA carriage and eradicate MRSA from contaminated 

farms, respectively (9, 61, 64, 108, 109, 132, 152, 159). 

Approximately 13% of gastrointestinal foodborne 

outbreaks have been related to C. perfringens infections (80, 

89, 134). C. perfringens foodborne infections are frequently 

associated with meat and poultry products. The meat products 

can be contaminated with this pathogen during slaughtering 

through the contaminated surface or the contact of carcasses 

with feces (80, 141, 160, 161). Standard food service practices 

should be pursued to prevent this pathogenic microorganism 

(82, 84, 134). Chicken meat is the most consumed animal 

protein, and a sufficient supply for consumers requires mass 

production strategies, exacerbating the challenge of infections 

by FBPs such as C. perfringens. Because of this, there is a 

need to find economical, environmentally friendly, and 

efficient alternatives in the modulation of the intestinal 

microbiota, which contribute to the efficient production of 

broiler chicken to meet current and future demand (41, 80, 

162). Also, it is recommended to cook food until the internal 

temperature reaches 70◦C. Notably, gastrointestinal infection 
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with C. perfringens in animals and humans occurs due to the 

production of potent exotoxins (89, 134, 136, 163). As one of 

the most common foodborne zoonotic pathogens, C. 

perfringens is known to induce a variety of diseases, from 

food poisoning and slight diarrhea to life-threatening 

enterotoxaemia and gas gangrene in humans and animals (80, 

162-164). Due to the increase in the emerging threat of 

foodborne-associated C. perfringens infections, many 

investigations demonstrated the prevalence of C. perfringens 

in food chains. They highlighted the evolution hazards of C. 

perfringens and the widespread MDR/toxigenic phenotypes. 

Several studies have revealed the high prevalence of MDR C. 

perfringens, which is a remarkable threat to the efficient 

treatment of foodborne illness by restricting the therapeutic 

options (34, 39, 134, 165, 166). The results of related studies 

indicated frustrating susceptibility patterns, and the antibiotics 

used in poultry feed as growth promoters were the main 

reasons for the evolution of C. perfringens resistance patterns 

as the bacteria became adapted due to the frequent use of 

antibiotics. Hence, there is an essential need for strict 

guidelines explaining the use of antibiotics and the safe 

production of food products of poultry origin (39, 89, 122, 

134, 136, 138, 165, 166). 
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