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The poultry's immune system is regulated by various genes involved in both 

innate and acquired immune responses. Understanding the changes in gene 

expression post-infection is essential for developing effective intervention 

strategies and improving disease management in the poultry industry. This study 

aimed to employ RNA-Seq to investigate the differential gene expression profiles 

and to identify the essential genes and pathways involved in the host response of 

poultry infected with the avian leukosis virus. For this purpose, RNA-Seq data of 

healthy and avian leukosis virus-infected birds on days 24 (n=6) and 40 (n=6) 

post-infection were used. After quality control and preprocessing, we aligned the 

reads to the chicken reference genome using STAR software and quantified gene 

expression using HTSeq-Count. Differential gene expression analysis was 

performed using the edgeR package in R. The results of this study showed that 

the uniquely mapped read percentage ranged from 78.07% to 87.74%, and the 

mismatch rate per base was found to vary between 0.77% and 1.45%. A total of 

2,213 and 1165 genes exhibited significant differential expression compared to 

the control group on day 24 and 40 post-infection, respectively (p<0.05). The gene 

ontology enrichment and pathway analysis revealed that six candidate genes, 

AvBD1, AvBD6, CATH1, CATH2, CATH3, and DEFB4A, are associated with 

the immune response on days 24 and 40. Additionally, on day 24, two more 

candidate genes, AvBD5 and LYG2, were found to be involved in the immune 

response. 
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1 Introduction 

vian diseases like avian influenza (AI), Newcastle 

disease (ND), infectious bursal disease (IBD), and 

avian leukosis viruses (ALVs) have a substantial adverse 

economic impact on the poultry industry globally. These 

diseases lead to significant economic losses due to mortality, 

decreased productivity, and trade restrictions imposed by 

various countries (1, 2). The outbreaks of these viral diseases 

result in the loss of birds, reduced production, job layoffs, 

and a decline in sales of poultry-related products like feeds, 

drugs, and equipment  (1). 

Avian leukosis viruses are classified into ten subgroups 

(A to J), with subgroups A, B, C, D, E, and J identified in 

chickens (2). ALV-J, discovered in broiler chickens since 

1988, is associated with increased tumor formation, immune 

suppression, and higher mortality rates. Enhancing poultry 

resistance to ALV through genetic approaches and immune-

related genes is crucial for disease-resistance breeding (3) . 

The poultry's immune system is regulated by various 

genes involved in both innate and acquired immune 

responses. Gene expression plays a crucial role in the 

immune response of poultry infected with the leukosis virus. 

Understanding the changes in gene expression post-infection 

is essential for developing effective intervention strategies 

and improving disease management in the poultry industry. 

Despite its importance, the molecular mechanisms 

underlying ALV infection and disease progression in poultry 

still need to be fully understood  (4). Recent advances in 

high-throughput sequencing technologies, such as RNA 

sequencing (RNA-Seq), offer a powerful tool for profiling 

gene expression levels, identifying differentially expressed 

genes, and unraveling the complex regulatory networks 

underlying host-pathogen interactions  (5). Studies have 

utilized RNA-Seq to analyze gene expression profiles, 

replacing traditional methods like microarrays (6, 7). 

Identifying genes associated with the cellular immune 

response is crucial for enhancing immune responses in 

breeding programs, highlighting the significance of 

understanding the genetic mechanisms underlying immune 

regulation in poultry  (8). RNA-Seq has been widely used to 

study the host-pathogen interaction and identify 

differentially expressed genes (DEGs) associated with 

various diseases, including viral infections  (9). For example, 

RNA-Seq has been used to study the transcriptomic response 

of chickens to infectious bronchitis virus (10) and avian 

influenza virus  (11). Sadr et al. (6) identified breed-specific 

DEGs, including those related to the immune system. 

Truong et al. (12) further explored the role of DEGs in the 

spleen of chickens afflicted with necrotic enteritis, 

highlighting the potential for marker-based selection of 

disease-resistant chickens. Kumar et al. (13) expanded the 

scope of RNA-Seq analysis, identifying DEGs involved in 

acclimating Korean commercial chickens to different 

geographical locations. By analyzing the transcriptomic 

landscape of infected poultry tissues, we can gain insights 

into the molecular mechanisms driving the immune response 

and identify potential targets for therapeutic intervention. In 

this study, we employed RNA-Seq to investigate the 

differential gene expression profiles and to identify the key 

genes and pathways involved in the host response of poultry 

infected with ALV.   

2 Materials and Methods 

2.1 Sample collection and RNA extraction 

The RNA-Seq data used in this study were retrieved from 

the European Nucleotide Archive (ENA) website 

(https://www.ebi.ac.uk/ena) under accession code 

ERP017744 (14). The data consisted of RNA-Seq reads 

from spleen samples of healthy and avian leukosis virus-

infected birds. On the first day after hatching, ALV-

challenged chicks were administered 100ul of SCDY1 

Avian Leukosis Virus Subgroup J based on the TCID50 of 

the virus. Meanwhile, a control group was given 100ul of 

PBS per chick. Samples, including blood and immune 

organs, were collected from healthy and avian leukosis 

virus-infected birds on days 24 (n=6) and 40 (n=6) post-

infection, respectively.  

Total RNA was extracted from the spleen tissues using 

miRNeasy Mini kit (QIAGEN, Germany) in accordance 

with the manufacturer's protocol. The quality and quantity of 

the extracted RNA were evaluated using the 

NanoPhotometer spectrophotometer (Implen Inc., CA, 

USA). Only RNA samples with an RNA integrity number 

(RIN) ≥ 9.4 were used for further analysis. The RNA 

samples were then sequenced using a high-throughput 

sequencing platform to generate RNA-Seq data. The 

libraries were run on the Illumina HiSeq 2000 platform 

across six lanes, producing 100bp paired-end reads. 

2.2 Quality control and preprocessing  

Quality data assessment is a crucial step in differential 

gene expression (DGE) analysis to ensure the reliability and 

validity of the results. Several metrics are used to assess data 

A 
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quality, including read quality scores, GC content, 

duplication rates, mapping rates, and gene expression levels. 

Low-quality reads, high GC content, excessive duplication, 

and poor mapping rates can introduce bias and errors into the 

analysis. We used FastQC software (version 0.10.1) (15) to 

evaluate the quality of our RNA-Seq data. The FastQC 

software generates an HTML file that displays the test 

results as graphs, with green (pass), orange (warning), or red 

(fail) marks indicating the status of each test. Additionally, 

the output file includes a table of basic statistics providing 

information about the data, such as the number of reads, read 

length, and GC content. The raw reads were then trimmed 

and filtered to remove adapters and low-quality bases using 

Trimmomatic (v0.39) (16). 

3 Alignment to the reference genome 

Trimmed RNA-seq reads were aligned to the reference 

genome using the STAR software (version 2.5.2a)  (17). The 

STAR software requires three input files: the RNA-seq 

FASTQ data file, the reference genome of Gallus gallus, and 

a GTF annotation file. The reference genome and the GTF 

annotation files are publicly available on the Ensembl 

website. We carried out the alignment process individually 

for each data file in FASTQ format. This alignment process 

involved the alignment of reads to the reference genome, the 

generation of a SAM file containing the alignment 

information, and the conversion of the SAM file to a BAM 

file for further analysis. By aligning reads to the reference 

genome, we can determine the genomic locations from 

which the reads originated, allowing for the quantification of 

gene expression levels.  

3.1 Quantification of gene expression 

The aligned reads were counted using the HTSeq-Count 

software (version 0.6.1). This software takes the BAM file 

resulting from the STAR alignment and the GTF file as input 

and calculates the number of reads that overlap with the 

exons of each gene. The output of the HTSeq-Count 

software was a text file that contained the count data for each 

gene. This file was saved for further analysis, including 

differential gene expression analysis. 

3.2 Differential gene expression analysis 

We analyzed differential expression using the edgeR 

statistical package in R (version 3.6.1) (18) to estimate 

differential expression between two or more conditions 

based on replicated samples' read counts. This package relies 

on a negative binomial distribution for modeling raw read 

counts at the gene level while adjusting for dispersion 

estimates based on the trend across all samples and genes. 

The input data for edgeR consisted of a matrix of read counts 

with row names corresponding to gene IDs and column 

names corresponding to sample IDs generated by HTSeq-

Count software. The removal of genes that are unexpressed 

or very lowly expressed in the samples was done by 

computing the counts per gene per million mapped reads 

(cpm) and choosing a cutoff based on the median log~2~-

transformed cpm. To compare gene expression between two 

conditions, it is essential to calculate the ratio of reads 

assigned to each gene to the total number of reads. However, 

this calculation is complicated because RNA sequencing can 

vary between samples, and differences in read counts may 

be due to contaminations, biological reasons, or other 

systematic effects. To address these issues, we performed 

normalization to remove systematic effects unrelated to 

biological differences. The normalization method calculates 

a size factor for each sample, which is used to scale the count 

data. Gene-specific dispersion estimates are used to test for 

differential expression. Finally, differentially expressed 

genes between the infected and control samples were 

identified. We considered genes with an adjusted p-value < 

0.05 cutoffs as differentially expressed. 

3.3 Functional annotation and pathway analysis 

To gain a more accurate and comprehensive 

understanding of the biological functions and processes of 

the differentially expressed genes, we performed functional 

annotation and pathway analysis. DAVID (Database for 

Annotation, Visualization, and Integrated Discovery) (19)  

was used to annotate and interpret the biological significance 

of differentially expressed genes with p-value < 0.05 and 

log-fold change higher than 2. DAVID is a web-accessible 

program to identify enriched biological pathways and 

processes that aid in interpreting datasets on a genomic scale, 

facilitating the transition from data collection to biological 

concepts. 

4 Results and Discussion 

4.1 RNA-Seq data quality assessment 

In order to evaluate the overall quality of the sequencing 

data, we utilized the "per base sequence quality" metric as 

provided by FastQC. This comprehensive evaluation 

https://jpsad.com
https://jpsad.com


 Azamian et al.                                                                               JOURNAL OF POULTRY SCIENCES AND AVIAN DISEASES, 2024, VOL. 2, NO. 3, 29-39 

 

 32 
 

involves summarizing data quality across ten distinct 

assessments, encompassing various factors critical for 

ensuring data integrity and reliability. The background plot 

of this test is divided into three regions. The green region 

indicates the desirable quality domain, the orange region 

indicates the acceptable quality domain and the red region 

indicates the undesirable and poor quality domain (15). 

According to the output plots, all the desired data were in the 

green region and the desirable quality domain (Figure 1). 

This categorization within the green zone indicates high-

quality sequencing data, suggesting that the sequences 

exhibit consistent quality across the bases. Specifically, this 

outcome suggests the minimal presence of base calls with 

low-quality scores, often the harbinger of sequencing errors 

or contaminations. Based on the basic statistics report for the 

data, for all data, the number of sequences flagged as poor 

quality was zero. The sequence length was 37, and the GC 

percentage was 48-49%. 

 

Figure 1. Per base sequence quality results from FastQC analysis. 

4.2 Alignment Results and Mapping Statistics 

The analysis of avian leukosis disease sequencing data 

yielded insightful metrics regarding the quality and 

effectiveness of the mapping process to the reference 

genome. The initial volume of input reads was substantial, 

averaging 69,046,919 reads per sample across the datasets 

considered.  

STAR alignment results showed that an average of 

58,106,442 reads per sample were successfully aligned to the 

reference genome. Alignment efficiency, a pivotal metric of 

sequencing efficacy, was quantified as the proportion of 

uniquely mapped reads to the reference genome to total input 

reads  (20). The uniquely mapped read percentage ranged 

from 78.07% to 87.74%, indicating a predominantly 

successful alignment process wherein most reads were 

precisely matched to specific genomic locations. This high 

mapping rate suggests that the sequencing data had a high 

level of coverage and depth and that the alignment process 

https://jpsad.com
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effectively identified the correct genomic locations for the 

reads (6).  

Another critical aspect of sequence analysis is the 

mismatch rate per base, which ranged between 0.77% and 

1.45%. The mismatch rate measures the average number of 

mismatches at each nucleotide position and is an important 

indicator of the sequencing error rate  (20). The observed 

mismatch rates are low, indicating high sequencing accuracy 

and a relatively low error rate. 

The proportion of reads aligned to multiple locations was 

analyzed, revealing a range from 3.84% to 14.97%. 

Additionally, a small proportion of reads mapped to multiple 

locations on the reference genome indicates high specificity 

in the mapping process (12).  

Given these metrics, it can be inferred that the homology 

mapping to the reference genome was executed proficiently. 

The substantial mapping rates coupled with low mismatch 

rates attest to the reliability and accuracy of the alignment 

process for the avian leukosis disease datasets. 

4.3 Differential Gene Expression Analysis 

To identify genes that were differentially expressed 

between the experimental and control groups, we used the 

EdgeR statistical package to analyze the RNA-Seq data. This 

comparison was meticulously designed to mirror the 

conditions under which the data were generated, ensuring an 

accurate reflection of the biological processes at play. The 

analysis revealed a significant number of genes that were 

differentially expressed between the control and virus-

infected groups at both day 24 and day 40 after infection 

(p<0.05). Our findings unveil a substantial alteration in gene 

expression patterns following viral infection. Specifically, 

on day 24 post-infection, a total of 2,213 genes exhibited 

significant differential expression compared to the control 

group (p<0.05). Among these, 1,195 genes were 

upregulated, implying increased expression levels in 

response to the viral infection. This upregulation, indicative 

of enhanced gene activity in response to the viral infection, 

might suggest a reactive biological process or a 

compensatory mechanism triggered by the presence of the 

virus (21). 

Conversely, a slightly larger subset of 1,018 genes was 

found to display decreased expression in the presence of the 

virus, signaling repression or downregulation of these genes 

in the infected state. This reduction in gene expression could 

reflect a direct consequence of viral infection on cellular 

functions or potentially signify a strategic viral evasion tactic 

undermining host defense mechanisms (12,21). At day 40, 

1165 genes were identified as differentially expressed 

(p<0.05), with 486 genes upregulated and 679 genes 

downregulated in the virus-infected group compared to the 

control group. A total of 796 of these genes were identical to 

genes with significant expression on day 24. Notably, the 

data demonstrated a marked disparity in the number of genes 

exhibiting altered expression levels at different time points 

post-infection. The number of differentially expressed genes 

was substantially higher on day 24 compared to day 40 

following viral infection, suggesting that the virus infection 

had a more profound impact on the host transcriptome 

earlier. The differentially expressed genes are likely to play 

important roles in the host-pathogen interaction and may be 

involved in developing leukosis disease. Identifying these 

genes provides a valuable resource for further investigation 

into this disease's molecular mechanisms. Our results are 

consistent with Palmer's work, which also reported a 

substantial upregulation of immune-related genes at early 

time points following ALV-J infection in chickens (22, 23).   

To visualize the differential expression patterns of these 

genes, we generated a heat map showing the logarithm of the 

read counts for genes with different expressions on days 24 

and 40 after infection in different samples (Figure 2). The 

heat map reveals a clear separation between the control and 

infected groups, with distinct clusters of genes that are 

upregulated or downregulated in response to virus infection. 

The heat map's horizontal axis delineates the samples from 

both control and infected groups. In contrast, the vertical 

axis portrays the logarithm of the read counts pertinent to 

genes manifesting differential expression. These results 

provide a comprehensive view of the transcriptomic changes 

that occur in response to virus infection and highlight the 

importance of considering the temporal dynamics of gene 

expression in understanding the host-pathogen interaction. 

 

https://jpsad.com
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Figure 2. Hierarchical clustering and heat map of the logarithm of the read counts of the differentially expressed genes on days 24 (A) and 

40 (B) after infection in different samples. C87, C88, and C89 represent control groups; k78, k79, and k80, infected groups. Red indicates a 

high expression level; blue indicates a low expression. 

 

Our study's differential gene expression assessment was 

visually represented through an MA plot (Figure 3). Within 

this plot, each point corresponds to a gene, with the Y-axis 

(log ratio) reflecting the magnitude of expression difference 

and the X-axis (mean average) showcasing the average 

expression level across conditions. Our analysis revealed a 

distinct differential gene expression pattern, with many 

genes lying outside the threshold lines, indicative of 

substantial upregulation or downregulation. Among these, 

genes above the top threshold line were significantly 

upregulated, whereas those below the bottom were markedly 

downregulated in the experimental group compared to the 

control group. A noteworthy feature of the MA plot was the 

symmetrical distribution of differentially expressed genes 

around the zero line of the Y-axis, underscoring the balanced 

nature of gene expression shifts between up and 

downregulation. This symmetry suggests that the cellular 

response to the condition under study involves a complex 

regulatory mechanism, affecting an extensive range of genes 

in both directions. 

 

Figure 3. MA plot. Scatterplot of log2 expression folds changes in infected versus control samples (y-axis) against the average expression 

level (x-axis). Genes with significant expression differences are shown in red, and gray points are not statistically significant genes. 

 

https://jpsad.com
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4.4 Functional Annotation and Pathway Analysis 

The differential gene expression analysis identified a 

subset of genes that exhibited significant changes in 

expression levels following poultry infection with leukosis 

virus. Then, we conducted a functional annotation analysis 

of these differentially expressed genes (DEGs) identified in 

poultry infected with the leukosis virus. Gene ontology (GO) 

enrichment analysis using the DAVID database was 

performed to elucidate the biological processes, molecular 

functions, and cellular components associated with the 

differentially expressed genes. Additionally, pathway 

analysis using the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) databases was conducted to identify the 

biological pathways and networks enriched among the 

differentially expressed genes. These analyses provide 

insights into the underlying biological mechanisms and 

pathways impacted by the viral infection, shedding light on 

the host response to the leukosis virus and potential 

therapeutic targets (24). 

GO enrichment analysis revealed significant enrichment 

of biological processes, molecular functions, and cellular 

components among the DEGs, highlighting the diverse 

functional roles of the identified genes (Table 1). A diverse 

array of biological processes was enriched among the DEGs, 

with notable enrichment in immune-related processes such 

as innate immunity and immunity on days 24 and 40. Other 

enriched processes on day 24 included ion transport, 

neurogenesis, and transport, suggesting a multifaceted 

cellular response to leukosis virus infection. 

Table 1. Enrichment of DGEs in biological processes identified through GO Analysis. 

Day Term % p-value Genes 

24 KW-0406~Ion transport 7.02  0.002 HCN4, RYR2, ASIC4, PGR2/3, GRIK1, GABRE, 

CACNG3, HCN1 

24 KW-0399~Innate immunity 3.51 0.010 CATH1, C8B, CATH2, CATH3 
24 KW-0524~Neurogenesis 2.63 0.080 NTRK2, MDGA1, MYT1 

24 KW-0813~Transport 10.53 0.08 HCN4, RYR2, ASIC4, SLC6A13, PGR2/3, SLC6A11, 

HBE, GRIK1, GABRE, SCN2A, CACNG3, HCN1 
40 KW-0399~Innate immunity 15.79 7.95E-4 CATH1, CATH2, CATH3 

40 KW-0391~Immunity 15.79 0.006 CATH1, CATH2, CATH3 

 

Molecular functions analysis identified enrichment in 

functions related to antimicrobial, antibiotic, and defensing 

on days 24 and 40, indicating the involvement of DEGs in 

the host defense reaction to the leukosis virus (Table 2). 

Table 2. Enrichment of DGEs in molecular functions identified through GO Analysis. 

Day Term % p-value Genes 

24 KW-0929~Antimicrobial 7.02 1.04E-9 CATH1, AVBD5, AVBD6, AVBD1, LYG2, DEFB4A, 

CATH2, CATH3 
24 KW-0044~Antibiotic 6.14 1.49E-8 CATH1, AVBD5, AVBD6, AVBD1, DEFB4A, CATH2, 

CATH3 

24 KW-0211~Defensin 3.51 1.17E-4 AVBD5, AVBD6, AVBD1, DEFB4A 
24 KW-0407~Ion channel 7.89 2.096E-4 HCN4, RYR2, ASIC4, PGR2/3, GRIK1, GABRE, SCN2A, 

CACNG3, HCN1 

24 KW-1071~Ligand-gated ion 
channel 

3.51 0.004 HCN4, RYR2, PGR2/3, HCN1 

24 KW-0675~Receptor 11.40 0.055 NTRK2, IL5RA, PGR2/3, GRIK1, GRPR, ACVR2B, RXFP1, 

GFRA2, PRLHR2, GRM8, RHO, GPR158, DRD4 
24 KW-0894~Sodium channel 1.75 0.08 HCN4, HCN1 

40 KW-0044~Antibiotic 31.58 1.42E-10 CATH1, AVBD6, AVBD1, DEFB4A, CATH2, CATH3 

40 KW-0929~Antimicrobial 31.58 3.79E-10 CATH1, AVBD6, AVBD1, DEFB4A, CATH2, CATH3 
40 KW-0211~Defensin 15.79 1.95E-4 AVBD6, AVBD1, DEFB4A 

 

Enrichment was also observed in molecular functions 

associated with ion channel, ligand-gated ion channel, 

receptor, and sodium channel on day 24, underscoring the 

regulatory roles of the identified genes in mediating 

intercellular communication and cellular signaling cascades. 

Analysis of cellular components revealed enrichment in 

genes localized to the secreted cell membrane, cell junction, 

gap junction, and membrane, reflecting the diverse 

subcellular localization of proteins involved in host-virus 

interactions (Table 3). 

https://jpsad.com
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Table 3. Enrichment of DGEs in cellular components identified through GO Analysis. 

Day Term % p-value Genes 

24 KW-0964~Secreted 15.79 1.18E-5 AVBD5, AVBD6, MYOC, NCAN, AVBD1, ASIP, IGF1, C8B, MMP9, 
CATH2, CATH3, DKK4, CATH1, OLFM1, FSTL5, GDF9, LYG2, 

DEFB4A 

24 KW-1003~Cell membrane 14.03 0.023 NTRK2, SLC6A13, RXFP1, GFRA2, GJD2, GJB1, GJC2, GJB6, GRM8, 
LOC429249, GABRE, SCN2A, MDGA1, GPR158, CDH18, DRD4 

24 KW-0965~Cell junction 3.51 0.059 GJD2, GJB1, GJC2, GJB6 

24 KW-0303~Gap junction 1.75 0.0712 GJD2, GJB6 
24 KW-0472~Membrane 42.98 0.088 RYR2, SLC35F4, IL5RA, GRIK1, GRPR, RXFP1, RGS5, GRM8, 

LOC420716, SLC6A13, SLC6A11, SEZ6L, UPK3A, GFRA2, GJD2, 

PRLHR2, CDH18, NLGN3, HCN4, RTN4R, SMIM5, LRTM2, 
LOC420903, ASIC4, DPP6, GJC2, GPNMB, PTPRZ1, RHO, 

LOC429249, GABRE, CACNG3, GPR158, DRD4, NTRK2, SUSD2, 

PGR2/3, IGF1, TMEM196, ACVR2B, CATH3, LRFN5, GJB1, GJB6, 
GALNTL6, MDGA2, SCN2A, MDGA1, HCN1 

40 KW-0964~Secreted 36.84 2.21E-5 GDF9, CATH1, AVBD6, AVBD1, DEFB4A, CATH2, CATH3 

 

The findings of the current study indicate enrichment in 

molecular functions associated with ion channel, ligand-

gated ion channel, receptor, and sodium channel on day 24 

post-infection with Avian Leukosis Virus Subgroup J (ALV-

J), highlighting the regulatory roles of the identified genes in 

mediating intercellular communication and cellular 

signaling cascades. Additionally, analysis of cellular 

components revealed enrichment in genes localized to the 

secreted cell membrane, cell junction, gap junction, and 

membrane, indicating the diverse subcellular localization of 

proteins involved in host-virus interactions. The enrichment 

of immune-related processes, particularly innate immunity, 

in our study underscores the critical role of the innate 

immune system in the early defense against ALV-J infection 

in poultry. The upregulation of genes involved in immune 

responses highlights the activation of host defense 

mechanisms to combat viral invasion and maintain 

homeostasis. These findings emphasize the significance of 

the host immune response in orchestrating the antiviral 

defense mechanisms during ALV-J infection. Our findings 

align with the research by Feng et al., who reported similar 

enrichment of immune-related processes, including 

upregulated genes involved in innate immunity and 

inflammatory responses in chickens infected with ALV-J 

(24, 25).   

Pathway enrichment analysis using KEGG pathways 

identified two significantly enriched pathways associated 

with the DEGs, including the NOD-like receptor signaling 

pathway, shedding light on the molecular pathways 

perturbed during leukosis virus infection. Enrichment was 

observed in the Neuroactive ligand-receptor pathway on day 

24, indicating the robust activation of immune responses in 

response to viral infection. These findings suggest that the 

leukosis virus infection triggers a robust immune response 

in poultry, highlighting their potential role in the underlying 

biological mechanisms (24). These results align with a study 

conducted by Chen et al., which also found that the NOD-

like receptor signaling pathway is activated by ALV-J 

infection in chickens (26). 

Table 4. The candidate genes in the first cluster that are involved in the immune response 

ID Gene Name Day 

AvBD1 avian beta-defensin 1(AvBD1) 24 and 40 

AvBD5 avian beta-defensin 5(AvBD5) 24  

AvBD6 avian beta-defensin 6(AvBD6) 24 and 40 

CATH1 cathelicidin-1(CATH1) 24 and 40 

CATH2 cathelicidin-2(CATH2) 24 and 40 

CATH3 cathelicidin-3(CATH3) 24 and 40 

DEFB4A defensin beta 4A(DEFB4A) 24 and 40 

LYG2 lysozyme g2(LYG2) 24 
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We performed functional annotation clustering using the 

DAVID tool to identify functional modules among the 

DEGs. This analysis revealed significant enrichment in 

specific functional categories, identifying 13 and 3 clusters 

of genes with distinct biological functions on days 24 and 48 

post-infection with Avian Leukosis Virus. Notably, the first 

cluster comprised 8 and 6 candidate genes associated with 

immune response, including those related to the NOD-like 

receptor signaling pathway (Table 4). Notably, genes such 

as AvBD1, AvBD6, CATH1, CATH2, CATH3, and 

DEFB4A were implicated in immune responses on days 24 

and 40, while AvBD5 and LYG2 genes were exclusively 

linked to immune responses on day 24. This cluster was 

significantly enriched in Gene Ontology (GO) terms related 

to immune response, such as antimicrobial, antibiotic, 

defense response, defensin, and defense response to 

bacterium. By linking the differentially expressed genes to 

specific biological processes and pathways, we can better 

understand the host factors contributing to susceptibility or 

resistance to viral infection. These findings lay the 

groundwork for further investigations into the molecular 

pathways driving the host response to leukosis virus 

infection. Furthermore, integrating functional annotation 

and pathway analysis data with other omics technologies, 

such as proteomics and metabolomics, can provide a more 

comprehensive understanding of the molecular interactions 

underlying viral pathogenesis (6, 12). 

 

 

Figure 4. Neuroactive ligand-receptor pathway was identified using pathway enrichment analysis of DGEs using KEGG on day 24. 
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Figure 5. NOD-like receptor signaling pathway was identified using pathway enrichment analysis of DGEs Using KEGG on days 24 and 

40. 

5 Conclusion 

In conclusion, the findings of the present study revealed 

significant differential expression of 2,213 and 1,165 genes 

on days 24 and 40, respectively, following infection with 

Avian Leukosis Virus Subgroup J. DAVID analysis revealed 

that a total of six candidate genes, AvBD1, AvBD6, CATH1, 

CATH2, CATH3, and DEFB4A, are associated with 

immune response on days 24 and 40. Additionally, on day 

24, two more candidate genes, AvBD5 and LYG2, were 

found to be involved in the immune response. These genes 

were significantly enriched in Gene Ontology (GO) terms 

related to immune response, such as antimicrobial, 

antibiotic, defense response, defensin, and defense response 

to bacterium. 
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