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Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a major health
and stewardship concern in poultry. We conducted a study in Mazandaran Province,
northern Iran, which was chosen because it is a major hub for broiler production and
frequently reports veterinary cases of colibacillosis. From 106 diagnostic submissions
with compatible necropsy lesions, 81 isolates of Escherichia coli were recovered using
EMB culture and confirmed by IMVIC. Plasmid-mediated quinolone resistance
(PMQR) genes were screened by conventional PCR for gnrA, gnrB, gnrS, ogxAB,
gepA, and aac(6')-1b-cr, with one representative amplicon per target Sanger-confirmed.
Fluoroquinolone susceptibility was assessed by Kirby—Bauer with ciprofloxacin,
enrofloxacin, norfloxacin, and nalidixic acid. PMQR carriage was common: ogxAB in
53.1% of isolates and gnrS in 34.6%, with lower frequencies of aac(6’)-Ib-cr (13.6%)
and gnrB (4.9%); gnrA and gepA were not detected. Non-susceptibility in disk diffusion
was highest for enrofloxacin (76.5%) and also high for nalidixic acid (60.5%), while
ciprofloxacin was lowest (23.5%), indicating substantial but heterogeneous
fluoroquinolone pressure in this setting. Genotype—phenotype discordance occurred:
five PMQR-positive isolates were fully susceptible to all tested fluoroquinolones,
whereas nine non-susceptible isolates lacked the screened PMQR genes, consistent
with alternative mechanisms such as gyrA/parC mutations or non-ogxAB efflux. These
Mazandaran-specific data link PMQR genotypes to clinically relevant phenotypes in a
high-priority poultry region, providing a baseline for surveillance and targeted
stewardship to curb empirical fluoroquinolone use while expanding monitoring of both
plasmid-borne and chromosomal resistance.
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1 Introduction

olibacillosis, caused by avian pathogenic Escherichia

coli (APEC), is one of the most impactful bacterial
problems in modern poultry production. It drives mortality,
carcass condemnation, poor weight gain, and feed
efficiency, as well as sustained treatment costs that erode
margins in broiler operations (1, 2). Beyond economics,
APEC and the mobile resistance elements it can carry raise
clear One Health concerns because extraintestinal
Escherichia coli lineages and their plasmids may circulate
among birds, farms, and people who work with poultry or
handle poultry products (3, 4).

Over the last two decades, fluoroquinolones have been
widely used in poultry, sometimes for both metaphylaxis and
treatment. That use has created strong selection pressure and
has been accompanied by higher rates of non-susceptibility
in Escherichia coli recovered from broilers and other birds
across several regions (5, 6). Surveys from commercial
flocks, retail meat, and wildlife that interface with poultry
production repeatedly document this trend, indicating that
resistance is not confined to a single point in the production
cycle (7, 8). Although classical quinolone resistance is
driven by chromosomal mutations in the quinolone
resistance-determining  regions of gyrA/gyrB  and
parC/parE, these mutations alone do not explain the speed
or breadth of spread seen in poultry systems (9-11).

Plasmid-mediated quinolone resistance (PMQR) fills that
gap. PMQR includes (i) target protection proteins encoded
by gnr alleles (gnrA, gnrB, gnrS) that shield DNA gyrase
and topoisomerase IV, (ii) the aminoglycoside
acetyltransferase variant aac(6’)-lIb-cr that partially
inactivates ciprofloxacin and norfloxacin, and (iii) efflux
determinants such as gepA (MFS) and ogxAB (RND) that
reduce intracellular drug levels (12-14). On their own, these
mechanisms often confer modest increases in MICs but
facilitate stepwise selection of high-level chromosomal
resistance and frequently travel with [-lactamases on
conjugative plasmids (15). Poultry studies from multiple
regions report these determinants alone and in combination,
often on epidemic plasmid backbones (16-21). Consistent
with this breadth of evidence, Iranian broiler data further
underscore the local relevance of PMQR within national
production systems (22-24).

Mazandaran Province in northern Iran hosts a dense,
economically important broiler industry yet remains
underrepresented in integrated assessments of the main
PMQR classes within clinical colibacillosis. To inform
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stewardship and surveillance, we conducted a regional
molecular investigation of APEC isolates from broiler flocks
with necropsy-supported diagnoses of colibacillosis in
Mazandaran. This study aimed to characterize, within a
single study framework, the prevalence and distribution of
target-protection genes (gnrA, gnrB, gnrS) along with the
principal efflux and drug-modifying determinants (ogxAB,
gepA, aac(6’)-1b-cr), using sequencing confirmation of
representative amplicons for specificity. We interpret our
findings in the context of the poultry literature from Asia,
Europe, and beyond, and highlight practical implications for
Iranian broiler production and regional One Health
priorities.

2 Materials and Methods

2.1  Study design and sampling strategy

This molecular study was conducted in Mazandaran
Province, northern Iran, from 2023 to 2024. Mazandaran
was selected because it is a major broiler-producing region
with frequent veterinary reports of colibacillosis, making it
an appropriate setting for baseline surveillance of plasmid-
mediated  fluoroquinolone  resistance (PMQR) in
Escherichia coli (25).

Consecutive, non-duplicate diagnostic submissions were
obtained from commercial broiler farms where field
veterinarians observed clinical signs and necropsy lesions
consistent with colibacillosis. A "suspect case" was defined
as a flock with increased mortality and typical gross lesions
at necropsy, including fibrinous pericarditis. From 106
suspect farm submissions (one per farm), pericardial exudate
and sterile swabs of fibrinous pericarditis lesions were
aseptically collected at necropsy, placed in transport
medium, and processed the same day under biosafety level-
2 conditions. To minimize clonality bias, a single
Escherichia coli isolate per submission was advanced to
downstream analyses. Planning targeted estimation of a
single proportion (PMQR carriage) with 95% confidence.
Assuming an anticipated prevalence of 30-60% and using
the conservative worst-case scenario (p=0.50), ~80 isolates
yield an approximate half-width of *11% (26). To
accommodate submissions that did not yield APEC, we
aimed to enroll at least 100 suspect farm submissions.

2.2 Identification of Escherichia coli

Pericardial material was streaked onto eosin methylene
blue (EMB) agar and aerobically incubated at 37°C for 18-
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24 hours. Lactose-fermenting colonies with a metallic-green
sheen were subcultured to purity and examined as Gram-
negative rods. Presumptive isolates were confirmed as
Escherichia coli by the IMVIC panel (Indole positive,
Methyl Red positive, Voges-Proskauer negative, Simmons
citrate negative). Only biochemically confirmed Escherichia
coli were used for molecular assays (27).

2.3 Fluoroquinolone susceptibility testing

Fluoroquinolone susceptibility was evaluated using the
Kirby—Bauer disk diffusion method on Mueller—Hinton
agar: overnight cultures of confirmed Escherichia coli were
adjusted to a 0.5 McFarland standard, plates were uniformly
inoculated, five ug ciprofloxacin, 10 pg norfloxacin, five pug
enrofloxacin, and 30 pg nalidixic acid disks were applied,
incubation proceeded at 37 °C for 18 h, and inhibition zone
diameters were measured in millimeters with a digital
caliper; quantitative zone diameters are reported for all
isolates and analyzed in relation to PMQR genotype (28).
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2.4  DNA extraction and PCR detection of PMQR genes

Template DNA was prepared from overnight cultures by
boiling lysis (95 to 100 °C), followed by rapid chilling and
centrifugation. The supernatant was then used as the
template. Conventional PCR assays targeted plasmid-
mediated quinolone resistance determinants, including
target-protection genes (gnrA, gnrB, qnrS), the drug-
modifying enzyme gene aac(6)-lb-cr, and the efflux
determinants gepA and ogxAB. Primer sequences, expected
amplicon sizes, and gene-specific annealing temperatures
are provided in Table 1. Each 25 uL reaction contained 1x
PCR buffer with MgClz, 200 uM of each dNTP, 0.3 uM of
each primer, 1 U Tag DNA polymerase, nuclease-free water,
and 1-2 pL of template DNA. PCRs were run on a
SensoQuest thermocycler (Germany) using Taq DNA
Polymerase 2x Master Mix RED as the reaction master mix.

Table 1. Primers used for PCR detection of plasmid-mediated quinolone resistance determinants in Escherichia coli

Target gene Sequence (5'-3") Amplicon (bp) Reference
0QXAB-F CCG CAC CGATAAATT AGT CC 313 bp (29)
0gXAB-R GGC GAG GTTTTG ATAGTG GA

aac(6')-1b-cr-F TTG GAA GCG GGG ACG GAM 260 bp (30)
aac(6')-1b-cr-R ACACGG CTG GAC CATA

qepA-F GCA GGT CCA GCA GCG GGT AG 218 bp (31
gepA-R CTT CCT GCC CGA GTATCG TG

gnrA-F ATT TCT CAC GCC AGG ATT TG 516 bp (29)
gnrA-R GAT CGG CAA AGG TTA GGT CA

gnrB-F GAT CGT GAA AGC CAG AAA GG 469 bp 29)
gnrB-R ACG ATG CCT GGT AGT TGT CC

qnrs-F ACG ACA TTC GTC AAC TGC AA 417 bp (32)

gnrS-R TAA ATT GGC ACC CTG TAG GC

Thermocycling for the gnrA/B/S assays consisted of an
initial denaturation at 95 °C for 5 min; 35 cycles of 95 °C for
45 s, 53 °C for 45 s, and 72 °C for 60 s; a final extension at
72 °C for 10 min; and a hold at 4 °C. For ogxAB, gepA, and
aac(6')-1b-cr, cycling consisted of an initial denaturation at
95 °C for 15 min; 30 cycles of 94 °C for 30 s, 63 °C for 30
s, and 72 °C for 90 s; a final extension at 72 °C for 10 min;
and a hold at 4 °C.

Each PCR run included a no-template negative control
(NTC) to monitor reagent and workflow contamination.
Amplicons were resolved on 1.5% Merck agarose in 1x
TAE, run at approximately 100 V for 45-60 min, stained
with ethidium bromide or SYBR-Safe, and visualized under
UV/blue light. A 100-bp DNA ladder was used for sizing;
bands at the expected sizes were interpreted as positive.
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Sequencing confirmation

A representative subset of positives for each target was
purified (Silica column) and subjected to Sanger sequencing.
Chromatograms were quality-checked and trimmed in
Chromas; bidirectional reads were assembled when
available. Consensus sequences were queried against the
NCBI database using BLASTn; matches with high coverage
and > 99% identity to the corresponding PMQR references
were accepted as confirmatory (16, 17).

2.5  Statistical analysis

The isolate served as the unit of analysis. For each
plasmid-mediated quinolone resistance determinant (gnrA,
qnrB, gnrS, ogxAB, qepA, aac(6')-1b-cr), prevalence was
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calculated as the proportion of PCR-positive isolates among
those tested for that determinant and is reported as a
percentage with two-sided 95% confidence intervals
computed by the exact (Clopper—Pearson) method.
Statistical summaries were generated in IBM SPSS Statistics
version 26.0, and percentages were reported to one decimal
place.

3 Results

3.1 Bacterial isolation, identification, and
fluoroquinolone susceptibility

A total of 106 diagnostic submissions from commercial
broiler flocks with necropsy lesions compatible with
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colibacillosis were processed, of which 81 yielded
Escherichia coli. Isolation was based on growth of lactose-
fermenting colonies with a metallic green sheen on EMB
agar, followed by biochemical confirmation using the
IMVIC scheme, namely Indole positive, Methyl Red
positive, Voges—Proskauer negative, and Simmons citrate
negative, which is consistent with Escherichia coli and was
used as the entry criterion for molecular analysis.
Fluoroquinolone susceptibility testing by disk diffusion
(ciprofloxacin five pug, enrofloxacin five pg, norfloxacin 10
Hg, nalidixic acid 30 pg) is summarized in Table 2. Overall
non-susceptibility (1+R) was highest for enrofloxacin
(76.5%) and nalidixic acid (60.5%), moderate for
norfloxacin (35.8%), and lowest for ciprofloxacin (23.5%).

Table 2. Fluoroquinolone disk diffusion results for Escherichia coli isolates (n=81). Values are n (%) by category (S, I, R).

Antibiotic (disk) Susceptible n (%)

Intermediate n (%) Resistant n (%)

Enrofloxacin (5 pg) 19 (23.5) 7 (8.6) 55 (67.9)
Nalidixic acid (30 pg) 32(39.5) 12 (14.8) 37 (45.7)
Norfloxacin (10 pg) 52 (64.2) 5(6.2) 24 (29.6)
Ciprofloxacin (5 pg) 62 (76.5) 2 (2.5) 17 (21.0)

3.2 Detection of plasmid-mediated quinolone resistance
determinants

All 81 Escherichia coli isolates were assayed for the
predefined plasmid-mediated quinolone resistance targets.
Among target-protection genes, gnrA was 0/81 (0.0%; 95%
Cl, 0.0 to 4.5), gqnrB was 4/81 (4.9%; 95% CI, 1.4 to 12.2),
and gnrS was 28/81 (34.6%; 95% CI, 24.3 to 46.0). Among
efflux and drug-modifying determinants, qepA was 0/81

=81)
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Prevalence (% of isolates, n

(0.0%; 95% Cl, 0.0 to 4.5), ogxAB was 43/81 (53.1%; 95%
Cl, 41.7 t0 64.3), and aac(6')-1b-cr was 11/81 (13.6%; 95%
ClI, 7.0 to 23.0). These findings indicate that oqxAB was the
most frequently detected marker in this cohort, that gnrS
accounted for roughly one-third of isolates, that aac(6’)-1b-
cr and gnrB were detected at lower frequencies, and that
gnrA and gepA were not detected under the conditions of this
study. Per-gene prevalence with exact 95% confidence
intervals is shown in Figure 1.

ogxAB

aac(6’)-Ib-cr
Gene

Figure 1. Prevalence of PMQR determinants among Escherichia coli isolates from broiler colibacillosis cases in Mazandaran (n=81). Y -axis:

Prevalence (% of isolates, n=81). Bars show percentage per gene with exact 95% confidence intervals (error bars).
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3.3 PMQR genotypes and their relationship with
fluoroquinolone susceptibility

Overall, 43/81 (53.1%) isolates carried at least one
PMQR determinant (the ‘“PMQR-positive set”). At the
isolate level (Table 3), PMQR-positive strains were enriched
among non-susceptible categories, particularly  for
enrofloxacin and nalidixic acid, mirroring the cohort-level
antibiogram.  Genotype—phenotype  discordance  was
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observed in both directions. Five PMQR-positive isolates
harbored one or more determinants yet remained fully
susceptible to all four fluoroquinolones by disk diffusion.
Conversely, nine isolates showed non-susceptibility to >1
fluoroquinolone but were negative for all screened PMQR
genes, consistent with alternative mechanisms such as
gyrA/parC mutations or other efflux systems beyond ogxAB.
Detailed isolate-level gene profiles and corresponding
resistance patterns appear in Table 3.

Table 3. Isolate-level PMQR genotypes and fluoroquinolone phenotypes for 43 gene-positive Escherichia coli from broiler colibacillosis in

Mazandaran (2023-2024); genotypes include qnrB, qnrS, oqxAB, aac(6")-Ib-cr, and resistance profiles reflect disk diffusion to ciprofloxacin

(CIP), enrofloxacin (ENR), norfloxacin (NOR), and nalidixic acid (NAL); “None” denotes full susceptibility to all four agents.

Antibiotic resistance profile (disk diffusion)

aac(6')-1b-cr 0gxAB gnrS qnrB Isolate

ENR, NAL

ENR

CIP, ENR, NAL
NOR, ENR, NAL
None

CIP, ENR

ENR, NOR

NAL

CIP, ENR, NOR, NAL
ENR

ENR, NAL

ENR, NOR

CIP, ENR, NOR
ENR, NAL

ENR

ENR, NOR, NAL
None

ENR, CIP

ENR, NAL

CIP, ENR, NAL
ENR, NOR

ENR

CIP, NAL

ENR, NOR, NAL
CIP, ENR

ENR, NOR

ENR, NAL

ENR, CIP, NAL
NOR

ENR

CIP, ENR, NOR, NAL
ENR

ENR, NAL

None

CIP, ENR, NOR
ENR

ENR, NAL

CIP

ENR, NOR, NAL
ENR, NAL

None

ENR, NOR

None

+ - P-0003
- - P-0005
- + P-0008
+ - P-0009
- - P-0011
+ - P-0013
P-0014
- - P-0017
+ - P-0019
- - P-0022
+ - P-0023
- - P-0025
- + P-0029
+ - P-0032
P-0034
+ - P-0035
- - P-0038
+ - P-0040
- - P-0041
+ - P-0042
P-0044
P-0047
+ - P-0052
- - P-0056
+ - P-0059
- - P-0060
P-0064
- - P-0068
+ - P-0073
- - P-0076
+ - P-0078
- - P-0082
+ - P-0085
- - P-0088
+ - P-0091
- - P-0092
+ - P-0095
- - P-0098
- + P-0100
+ - P-0101
P-0104
+ - P-0105
- - P-0106

+ + 4+ + + + + + ++ o+ o+ + o+ o+ o+ o+ + o+ 4+
[
[
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3.4 Sequencing confirmation

For analytical specificity, one representative amplicon
from each positive target (gqnrB, gnrS, ogxAB, and aac(6')-
Ib-cr) was purified and subjected to Sanger sequencing. All
sequences showed >99% identity to their respective
reference targets on BLASTN, confirming the identity of
each assay's amplification product.

4 Discussion

In this regional analysis of Escherichia coli from broiler
flocks with  necropsy-confirmed colibacillosis in
Mazandaran, northern Iran, ogxAB and gnrS were the
predominant  plasmid-mediated quinolone resistance
markers, while aac(6')-1b-cr and gnrB occurred at lower
levels, and gnrA/gepA were absent. This distribution is
consistent with reports from commercial poultry systems,
where 0gxAB and gnrS are frequently detected. Studies from
China and Korea have documented widespread ogxAB and
substantial gnr carriage across birds, retail meat, and farm
environments (1, 33). The absence of gepA and the low rate
of gnrB in animal-origin surveys, where these genes are
uncommon, contrasts with gnrS, which is typically the most
frequent target-protection allele in avian isolates. (6, 13, 16).
Our PMQR is broadly consistent with recent poultry cohorts
in Europe and Asia, where ogxAB and gnrS are recurrent and
gnrA/gepA remain infrequent (19, 21).

The predominance of ogxAB has practical implications
because this RND-family efflux system can reduce
intracellular  levels of multiple agents beyond
fluoroquinolones. It may also be co-selected by non-
antibiotic pressures encountered in poultry production,
broadening the ecological niches that favor persistence (5).
The substantial gnrS signal indicates that target protection
remains a significant contributor to decreased quinolone
susceptibility in clinical broiler isolates, and the presence of
aac(6')-1b-cr in a smaller subset suggests additional
modification of ciprofloxacin and norfloxacin in the
population (9, 12, 34). These patterns are consistent with the
elevated non-susceptibility we observed for enrofloxacin
and nalidixic acid, supporting the view that PMQR provides
a low-level scaffold that facilitates selection of high-level
chromosomal resistance under repeated drug exposure (35).
Although we did not characterize B-lactam resistance, prior
work has shown that PMQR genes can share plasmids with
extended-spectrum B-lactamases, creating opportunities for
co-selection under either antibiotic class and compounding
the stewardship challenge in integrated operations (15).
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Our findings add province-specific context to the growing
Iranian literature on PMQR in broiler systems. The detection
of PMQR determinants in commercial broilers from Semnan
has already established a national signal, and the current data
from Mazandaran indicate that efflux, dominated by ogxAB,
and target protection via gnrS are also prominent in northern
production, which argues for broader inter-provincial
monitoring within a single analytic framework (22, 23). The
concurrent phenotypic data also highlight that some isolates
lacking detectable PMQR genes still exhibit fluoroquinolone
non-susceptibility, indicating an additional contribution
from chromosomal gyrA/parC mutations. The study’s
strengths include a uniform diagnostic case definition based
on necropsy findings, a single analytical unit per farm to
limit clonality bias, standardized PCR conditions across all
isolates, and sequencing confirmation of representative
amplicons for specificity. The cross-sectional design, lack of
species-specific PCR and APEC virulence-gene screening,
absence of positive controls for qgnrA/gepA, and no
sequencing of quinolone-resistance—determining regions
limit the inference on chromosomal backgrounds and
clinical interpretation. The single-province scope may also
constrain  generalizability to settings with different
antimicrobial-use practices. These limitations define
priorities for future work, yet do not alter the core
description of PMQR distribution in clinical Escherichia coli
from broiler colibacillosis cases in Mazandaran (29).

From a One Health perspective, the coexistence of robust
0gxAB and substantial gnrS detection in broiler colibacillosis
isolates supports targeted stewardship that limits empirical
fluoroquinolone  use,  prioritizes  diagnostics  and
susceptibility testing, and strengthens biosecurity and
vaccination strategies that reduce the need for antimicrobial
therapy (5, 33). In our work, genotype—phenotype
mismatches (five PMQR-positive but fully susceptible
isolates and nine non-susceptible isolates lacking the
screened PMQR genes) further support the coupling of
routine antibiograms with molecular assays and periodic
MIC testing to capture chromosomal mechanisms, such as
gyrA/parC and non-ogxAB efflux activity. Given evidence
of PMQR within birds, farm environments, and along retail
pathways in several regions, a provincial surveillance
program that pairs PMQR screening with ESBL markers,
plasmid typing, and periodic whole-genome sequencing
would provide early warning for emerging plasmid
backgrounds and help align farm-level interventions (for
example, indication-based prescribing, withdrawal-interval
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adherence, and litter/manure management) with public
health priorities (3, 4).

5 Conclusion

Clinical Escherichia coli from broiler colibacillosis in
Mazandaran, northern Iran, showed a PMQR profile
dominated by ogqxAB and gnrS, with lower detection of
aac(6)-1b-cr and gnrB, and no detection of qnrA or gepA.
This distribution aligns with recent poultry reports from Asia
and Europe and complements Iranian data from Semnan,
indicating that PMQR determinants are now entrenched in
national broiler production. The findings underscore the
importance of prudent fluoroquinolone use, enhanced farm-
level prevention, and coordinated surveillance that links
PMQR with plasmid and B-lactam resistance markers to
inform effective antimicrobial stewardship and One Health
interventions in the poultry sector.
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