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Ochratoxin A (OTA) is a biologically produced mycotoxin with nephrotoxic,
hepatotoxic, and immunotoxic properties, commonly generated by various
Aspergillus and Penicillium species. The aim of this study was to evaluate the
toxicological effects of OTA on human kidney cells by analyzing the expression
of inflammation-related genes (Caspase-3 and NF-kB), and to investigate the
individual and combined effects of silver nanoparticles (AgNPs) and nano-cineole
on the expression of these genes. The cell viability of OTA-treated and untreated
HEK-293 cells was assessed using the MTT assay. HEK-293 cells treated with
AgNPs, cineole nanoparticles, and their combination, as well as OTA-induced
HEK-293 cells, were used to study the expression of genes involved in the
apoptotic pathway, particularly Caspase-3 and NF-kB. Apoptosis was also
evaluated using the Annexin V apoptosis detection kit. The MTT assay results
indicated a significant decrease in cell viability in HEK-293 cells exposed to OTA.
Conversely, treatment with higher concentrations of both AgNPs and nano-cineole
significantly improved cell viability. gPCR analysis showed that treatment with all
nanoparticle types (individual and combined) significantly reduced the expression
of Caspase-3 and NF-kB genes in OT A-exposed cells (p<0.05). The percentage of
apoptotic cells was lower in nanoparticle-treated groups compared to OTA-only
treated cells, suggesting that these nanoparticles can mitigate OTA-induced
cytotoxicity. These findings may also have implications for poultry health, as
ochratoxin A is a common contaminant in poultry feed, and similar cellular
pathways are involved in toxin-induced kidney damage in poultry.
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1 Introduction

ycotoxins are secondary metabolites produced by

toxigenic fungi that can contaminate various food
products. Ochratoxin A (OTA), a biologically synthesized
mycotoxin, exhibits nephrotoxic, hepatotoxic, and
immunotoxic properties and is mainly produced by
Aspergillus and Penicillium species (1). Due to its ubiquity,
biological origin, and chemical stability, OTA can be
produced and persist throughout food storage and
transportation, making human exposure to this toxin
inevitable. Studies have shown that mycotoxins can damage
specific cells by reducing cell viability, inducing apoptosis
and autophagy, and causing cell cycle arrest.

In addition to human health concerns, OTA
contamination is a major issue in poultry production
systems. Poultry feed is frequently contaminated with
ochratoxin-producing fungi, leading to nephrotoxicity,
immunosuppression, poor growth performance, and
increased susceptibility to infectious diseases in broiler
chickens and laying hens (2, 3). Considering the economic
importance of the poultry industry and the critical role of
feed safety in flock health, exploring novel mitigation
strategies such as green-synthesized nanoparticles could
have valuable implications for both veterinary and public
health.

Reactive oxygen species (ROS) are highly reactive by-
products of normal cellular metabolism. Excessive ROS
production leads to oxidative stress, which in turn
contributes to apoptosis and cell cycle disruption (4). OTA
has been shown to enhance ROS generation, resulting in
apoptosis in normal cells (5, 6). The European Food Safety
Authority has classified OTA as a potent nephrotoxin in
animals such as rodents and pigs, with Kidney damage
severity being dose and duration-dependent. OTA-induced
genotoxicity is believed to stem from the generation of free
radicals, leading to cellular injury and renal carcinogenesis
observed in murine models (7).

To improve food safety and prolong shelf life, developing
novel antimicrobial agents is necessary. One promising
strategy involves the use of antimicrobial compounds, either
directly applied to food or incorporated into packaging
materials (8). Recently, there has been increased interest in
using inorganic antimicrobial agents in food and non-food
applications (9). Among these, silver nanoparticles (AgNPs)
and 18-cineole have demonstrated considerable
antimicrobial efficacy (Lima et al., 2021)(10). AgNPs have
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widely become used due to their potent antibacterial and
antifungal activities.

GOmez et al. (2019) demonstrated the ability of
engineered AgNPs to inhibit mycotoxins such as aflatoxins
and OTA, as well as the growth of major mycotoxigenic
fungi including Aspergillus flavus, A. parasiticus, A.
carbonarius, A. niger, A. ochraceus, A. steynii, A.
westerdijkiae, and Penicillium verrucosum (11). Similarly,
Khalil et al. (2019) reported the anti-mycotoxin activity of
biogenic AgNPs synthesized by Fusarium chlamydosporum
and Penicillium chrysogenum, even at non-cytotoxic levels
(12). AgNPs are known to induce apoptosis in fibroblast
cells via ROS production and JNK pathway activation,
leading to mitochondria-dependent cell death (13).
Furthermore, AgNPs can modulate TNF-a signaling,
promoting inflammation through the NF-kB and cytokine
pathways (14).

Natural phytochemicals such as 1,8-cinecle have shown
the ability to modulate cellular and humoral immune
responses. This monoterpene, commonly used in food,
cosmetics, and pharmaceuticals due to its aroma and flavor,
possesses insecticidal, antibacterial, hepatoprotective, and
anti-inflammatory properties (15). However, its therapeutic
potential is limited by poor water solubility and low stability.
To overcome these limitations, nano-based formulations of
cineole have been developed. Previous studies have reported
that 1,8-cineole exhibits stronger antifungal and anti-
ochratoxigenic activity against A. carbonarius compared to
other essential oils, such as those from Lavandula dentata
and Laurus nobilis (16). Linghu et al. (2016) demonstrated
that 1,8-cineole ameliorates cellular dysfunction by
suppressing NF-kB activation (15). Additionally, cineole
has been found to induce mitochondrial stress and activate
caspases, leading to programmed cell death in normal cells
(17)(Nikbakht Rad et al., 2022).

Therefore, the aim of the present study was to investigate
the synergistic effects of silver nanoparticles and nano-
cineole on OTA-induced cytotoxicity in human kidney cells
(HEK-293 cell line) by evaluating the expression levels of
inflammation-related genes Caspase-3 and NF-xB

2 Materials and Methods
2.1  Preparation and characterization of Nanoparticles

To prevent oxidation of the silver nitrate solution, 0.169
g of AgNOs was dissolved in 1 L of deionized water to
prepare a 1 mM silver nitrate solution (Merck, Germany).
The solution was stored in an amber-colored container to
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protect it from light. Silver nanoparticles (AgNPs) were
synthesized via a one-step method. Briefly, 90 mL of silver
nitrate solution and 10 mL of cineole solution (Merck,
Germany) were mixed and heated to 80 °C for 15 minutes.
The solution color changed from pale yellow to brown,
indicating the formation of AgNPs. The produced
nanoparticles were then stored for 24 hours in a 12 N
hydrochloric acid solution. AgNPs were separated from the
mixture by centrifugation and repeatedly washed with
distilled water until all hydrochloric acid residues were
removed (18).

The 1,8-cineole powder used to synthesize cineole
nanoparticles (cineol-NPs) was purchased from Merck
(Germany). Cineol-NPs  were prepared using a
physicochemical method as described by Hettiarachchi et al.
(2021). The stock cineole solution (5 mg/mL) was prepared
by dissolving cineole powder in 20 mL of dichloromethane.
Under ultrasonication (Velp Scientifica, Europe), 1 mL of
the stock solution was added dropwise into 50 mL of boiling
water at a flow rate of 0.1 mL/min. The mixture was
sonicated for 30 minutes and then stirred at 800 rpm for 20
minutes until a precipitate formed. The supernatant was
discarded, and the cineol-NPs were collected for further
analysis (19).

Topological, morphological, and compositional analyses
were performed using a Nova Nano FE-SEM 450 (FEI)
scanning electron microscope (SEM). The instrument
operated with beam landing energies from 30 keV to 50 eV,
offering resolutions of 1.4 nm at 1 kV and 1 nm at 15 kV.
Prior to SEM analysis, all nanoparticles were coated with
gold. Dynamic light scattering (DLS) and Zeta-potential
measurements were carried out using a Zeta Sizer (Nano-ZS,
Malvern Instruments Ltd., UK). For these analyses, 5 mg of
the samples were dissolved in 30 mL of distilled water and
sonicated for 15 minutes. The resulting colloidal solution
was diluted 1:1 with distilled water, sonicated again, and
used for particle size distribution and Zeta-potential
measurement. All experiments were performed in triplicate

2.2 Cell Culture

The HEK293 cells were obtained from the Iranian
Biological Resource Center (Tehran, Iran). HEK293 cells
were grown in DMEM/F12+ Glutamax HEPES culture mix
with 10% FBS (Gibco, USA) and 100 U/mL antibiotics
(Penicillin and Streptomycin) (SigmaAldrich, USA) in a 5%
COy incubator (BINDER, USA) at 37°C. The cells reached
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around 75% confluence and were transferred to 96-well
plates and 25-cm? flasks based on the experimental setup.

2.3  MTT assay

The effects of nanoparticles on the proliferation and
survival of normal and OTA-induced HEK-293 cells were
evaluated using the MTT Cell Viability Assay Kit
(DNAbiotech Company, Iran) following the manufacturer's
protocol. HEK-293 cells were treated with silver
nanoparticles (AgNPs) and green cineole nanoparticles for
24 hours before performing the MTT assay. For the assay,
100 pL of complete culture medium containing 10° HEK-
293 cells and 100 pL of each nanoparticle concentration
(100, 50, 25, 12.5, 6.5, 3.125, 1.56, 0.78, 0.39, and 0.195
pHg/mL) were added to individual wells of a 96-well plate.
Well 11 served as the positive control, and well 12 was used
as the negative control.

Next, 100 uL of working MTT solution was added to each
well, and the plate was incubated at 37 °C for 4 hours.
Subsequently, 100 pL of acidified isopropanol buffer was
added to each well, and the plate was incubated for an
additional 15 minutes at 37 °C. Absorbance was measured at
570 nm (with a 690 nm reference filter) using a SpectraFluor
microplate reader (Tecan, Crailsheim, Germany). All tests
were performed in triplicate (18).

To assess the effects of AgNPs and green cineole
nanoparticles on OTA-induced HEK-293 cells, 1 mL of
complete DMEM medium was added to six wells of a culture
plate. Subsequently, 200 uL of green cineole nanoparticles
and 250 pL of AgNPs at concentrations ranging from 1 to 10
pg/mL were added to the cells. Ten pug/mL of OTA was
applied to the wells to induce toxicity (18). At the end of
treatments, 10° cells were seeded into each well. Four
experimental groups were designed for cytotoxicity
evaluation:

e Group 1: HEK-293 cells treated with AgNPs

e Group 2: HEK-293 cells treated with cineole
nanoparticles

e Group 3: OTA-induced HEK-293 cells treated with
AgNPs

e Group 4: OTA-induced HEK-293 cells treated with
cineole nanoparticles

The experiments were repeated twice, with plates
incubated for 18 hours at 37 °C in a humidified atmosphere
containing 5% CO:. Cell viability percentage was calculated
using the following formula
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Percentage of viability

Absorption (treated — well)
=100 x

Absorption (control — well)

2.4  RNA extraction and RT-PCR

Total RNA was extracted from HEK-293 cells, OTA-
induced HEK-293 cells, AgNPs-treated cells, and cineole
nanoparticle-treated cells using the TRIsure reagent
(Bioline, Luckenwalde, Germany) according to the
manufacturer's instructions. RNA concentration and purity
were assessed by measuring absorbance at 260/280 nm using
a NanoDrop One UV-Vis Spectrophotometer (Thermo

Table 1. Gene-specific primers used.
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Fisher Scientific, Waltham, MA, USA). RNA integrity was
confirmed by electrophoresis on 1% agarose gel.
Complementary DNA (cDNA) synthesis was performed
using the BioFact™ RT Series cDNA synthesis kit with
reverse transcriptase enzyme. Quantitative real-time PCR
(QRT-PCR) was subsequently conducted as a one-step
process with the QuantiTect SYBR Green Kit (Qiagen) on a
Rotor-Gene RG-3000 instrument. Primer sequences for
Caspase 3, NF-xB, and GAPDH genes were obtained from
previous studies and are presented in Table 1. Primer
specificity was confirmed by melting curve analysis.
Relative gene expression was calculated using the 2"—AACt
method with GAPDH as the internal reference gene.

Primer Sequence (5'- 3')

Gene Forward Reverse

caspase-3 CATGGAAGCGAATCAATGGACT CTGTACCAGACCGAGATGTCA
NF-kB ATCCCATCTTTGACAATCGTGC CTGGTCCCGTGAAATACACCTC
GAPDH GCACCGTCAAGGCTGAGAAC TGGTGAAGACGCCAGTGGA

2.5  Apoptosis detection by flow cytometry

Apoptosis rates in HEK-293 cells and OTA-induced
HEK-293 cells treated with nanoparticles were assessed
using the Annexin-V Apoptosis Detection Kit (MabTag)
following the manufacturer's protocol. HEK-293 cells were
cultured in T25 flasks and treated with the ICso
concentrations of AgNPs, cineole nanoparticles, and
combined nanoparticles for 24 hours.

Cells were then harvested from each flask, and pellets
from control and treated groups were resuspended in 90 uL
of 1x Annexin-V binding buffer. Subsequently, 5 pL of
Annexin-V conjugate and 5 pL of propidium iodide (PI)
solution were added to each tube, followed by incubation in
the dark for 20 minutes. Afterward, 400 pL of Annexin-V
binding buffer was added.

Following centrifugation at 400 x g for 5 minutes, cells
were resuspended in 1x Annexin-V binding buffer and
analyzed for apoptotic cell death using a BD FACS Calibur
flow cytometer (BD Biosciences, San Jose, CA, USA). Flow
cytometry data were processed with FlowJo vi10 CL
software (Manufacturer) (18).

2.6  Statistical analysis

The experimental data were presented as MeantSEM,
calculated using GraphPad Prism 6 software. Three
replicates were conducted to establish the standard
deviation. The data were analyzed using one-way ANOVA
followed by Tukey's post-hoc test to determine statistically
significant differences between the groups, with a
significance level set at p<0.05.

3  Results
3.1  NPs morphology and size

The particle size, Polydispersity index (PDI), and Zeta-
potential of the synthesized NPs were investigated using
DLS. According to the results, green AgNPs and combined
NPs had an average size of 128.3+10.8, and 169.3+8.4,
PDI of 0.079 and 0.212 and Zeta potential of —19.2 and -
31.4 (mV), respectively (Figure 1). The shape, size,
morphology, and surface texture of the AgNPs, Cineole NPs
and combined form of NPs were detected using the SEM
technique. The SEM of prepared NPs further suggested their
smooth surface texture, and spherical polydisperse particles
with a mean diameter of approximately 20-100 nm (Figure
2).
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Figure 1. Dynamic light scattering (DLS) analysis of the synthesized nanoparticles. (A) Size distribution curve of green AgNPs; (B) size

distribution curve of combined NPs; (C) Zeta potential distribution of green AgNPs; and (D) Zeta potential distribution of combined NPs.

Figure 2. . Scanning electron micrographs (SEM) of the synthesized nanoparticles showing the morphology and surface structure of (A) green
AgNPs, (B) Cineole NPs, and (C) the combined form of NPs. All samples display predominantly spherical particles with smooth surface

texture.
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3.2 Cytotoxic activity

The cytotoxic effects of AgNPs and Cineole
nanoparticles on both untreated and OTA-treated HEK-293
cells were assessed using the MTT assay after 21 hours of
exposure (Figure 3). A concentration-dependent cytotoxicity
pattern was observed in normal HEK-293 cells exposed to
higher concentrations of both AgNPs and Cineole
nanoparticles (100, 50, 25, 12.5, 6.25, 3.125, and 1.56
ug/mL), with a reduction in cell viability of up to 40% at 100
pg/mL compared to the control group. In contrast, no
significant cytotoxicity was detected at lower concentrations
(0.78, 0.39, and 0.195 pg/mL), indicating a safer profile at
these doses.

JOURNAL OF POULTRY SCIENCES AND AVIAN DISEASES, 2026, VOL. 4, NO. 1, 1-11

Exposure to OTA alone led to a marked decline in cell
viability, confirming its high toxicity to human kidney cells.
However, when OTA-induced HEK-293 cells were treated
with increasing concentrations of AgNPs or Cineole
nanoparticles (from 3.125 to 100 pg/mL), a notable
improvement in cell viability was observed. Remarkably,
treatment with the lowest nanoparticle concentrations (0.39
and 0.195 pg/mL) restored cell viability in OTA-induced
cells to nearly 100%.

These results suggest that high concentrations of
nanoparticles may exert cytotoxic effects on healthy cells,
whereas low concentrations of the same nanoparticles can
alleviate OTA-induced cytotoxicity and promote cell
survival.
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Figure 3. A) HEK-293 cell viability treated with cineole nanoparticles. B) HEK-293 cell viability treated with AgNPs.
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3.3  Caspase 3 and NFkB genes expression

The expression levels of Caspase 3 and NF-«xB, two
critical genes involved in the apoptosis and inflammation
pathways, were evaluated in untreated HEK-293 cells, OTA-
induced HEK-293 cells, and cells treated with AgNPs,
Cineole nanoparticles, or their combination (Figure 4).
Quantitative PCR analysis revealed a significant
downregulation of both Caspase 3 and NF-xB gene
expression in  OTA-induced cells treated with all
nanoparticle forms compared to untreated OTA-induced
cells (p<0.001).
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The combined treatment exhibited the most substantial
inhibitory effect on Caspase 3 and NF-kB expression in
normal HEK-293 cells relative to the control group
(p<0.001). However, in OTA-induced cells, while the
combination therapy did not significantly alter Caspase 3
expression compared to OTA-only cells, it significantly
reduced the expression of NF-kB (p<0.001).

Furthermore, the reduction in gene expression was more
pronounced in cells treated with Cineole nanoparticles alone
than in those treated with AgNPs, suggesting that Cineole
nanoparticles are more effective in mitigating OTA-induced
cellular damage through downregulation of apoptotic and
inflammatory pathways.
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Figure 4. (A) Caspase 3 and (B) NF«B gene expression in HEK-293 and OTA-induced HEK-293 cells treated with AgNPs, cineole
nanoparticles, and combined-NPs. The groups are as follows: (1) Cell + OTA, (2) Cell + OTA + Nano Cineole, (3) Cell + OTA + Nano
Silver, (4) Control, (5) Cell + Nano Cineole, (6) Cell + Nano Silver, (7) Cell + OTA + Nano Cineole + Nano Silver, and (8) Cell + Nano
Cineole + Nano Silver. Data are presented as Mean+SEM. Statistical significance is indicated as **** (p<0.0001)

3.4  Flow cytometry analysis

Flow cytometric analysis was performed to evaluate the
effects of AgNPs, cineole nanoparticles, and their
combination on apoptosis in both untreated and OTA-
induced HEK-293 cells (Figure 5). A marked increase in
apoptotic cell populations was observed following treatment
with all nanoparticle forms and OTA compared to untreated
control cells.

In normal HEK-293 cells, baseline levels of early and late
apoptosis were 2.8% and 1.9%, respectively. Treatment with
cineole nanoparticles resulted in 64.7% early and 10.0% late
apoptotic cells, while AgNPs induced 13.5% early and
49.4% late apoptosis. Combined nanoparticle treatment led
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to 57.3% early and 19.2% late apoptosis. These findings
indicate that nanoparticle exposure induces apoptosis even
in untreated cells, with variations depending on nanoparticle
type.

In OTA-induced HEK-293 cells, early and late apoptosis
rates reached 10.8% and 69.6%, respectively, indicating
significant OTA-induced cytotoxicity. However, following
treatment with cineole nanoparticles, these rates decreased
to 55.6% and 19.3%, respectively. AgNPs treatment led to
11.6% early and 53.0% late apoptosis, while combined
nanoparticles reduced apoptosis levels to 52.4% (early) and
24.3% (late).

Overall, these results suggest that both cineole and silver
nanoparticles—particularly when combined—can mitigate
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Furthermore, the combination therapy appeared to lessen the
necrotic effects observed in cells treated with AgNPs alone,
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indicating a possible protective interaction between the two
nanoparticle types.

Figure 5. Figure 5. Flow cytometry plots for the impact of exposure to AgNPs, cineole nanoparticles, and combination nanoparticles on the

death of HEK-293 cells and OTA-induced HEK-293 cells.

4 Discussion

The results showed that treatment with increased
concentrations of both AgNPs and cineole nanoparticles
significantly enhanced the viability of OTA-induced HEK-
293 cell lines and reduced the toxic effects of OTA on
normal cells. Numerous studies have indicated that exposure
to OTA in both in vitro and in vivo systems results in
excessive generation of free radicals, leading to oxidative
damage to lipids, proteins, and DNA (1, 4). OTA is known
to trigger lipid peroxidation by utilizing Fe3+ as a cofactor.
The NADPH-CYP450 reductase-OTA-Fe3+ complex
facilitates the reduction of Fe3+ to Fe2+, leading to the
formation of the OTA-Fe2+ complex, which promotes free
radical generation, lipid peroxidation, and DNA damage (5).

This oxidative stress could explain why normal cells lose
viability following OTA exposure. Damiano et al. (2018)
identified oxidative stress as a key contributor to OTA-
induced kidney damage and proposed &-tocotrienol as a
potential antioxidant to mitigate this effect (20). Curcumin
has also been shown to reduce the adverse effects of chronic
OTA exposure by modulating inflammatory markers,

reducing nitric oxide levels, and minimizing oxidative DNA
damage in kidney and liver tissues (21).

Nanoparticles such as zinc oxide, silver, gold, selenium,
and carbon-based materials possess notable antioxidant
properties (8, 9) (Lima et al., 2021). Green-synthesized
nanoparticles are particularly enriched in natural bioactive
compounds, enhancing their antioxidant capabilities (10).
Mao et al. (2022) reported that supplementation with
selenomethionine  significantly reduced OTA-induced
cytotoxicity in MDCK cells (18). Similarly, Abdel-Wahhab
et al. (2017) demonstrated that chitosan nanoparticles
combined with quercetin alleviated oxidative stress and
DNA damage in the kidneys of rats fed OTA-contaminated
diets (7).

ZnONPs synthesized via green methods have been shown
to improve pathological outcomes of OTA toxicity,
including tissue degeneration, vascular congestion, and
necrosis in liver and kidney tissues (9). Biogenic AgNPs
were also effective in reducing aflatoxin and OTA
production by Aspergillus strains without harming normal
human melanocytes (12). Selenium nanoparticles exhibited
potent antifungal activity, inhibiting OTA production by
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Aspergillus ochraceus and Penicillium verrucosum, and
displayed strong biocompatibility with normal cell lines.

OTA has been shown to induce both apoptotic and
necrotic cell death (4). Markers of apoptosis such as DNA
fragmentation, chromatin condensation, and caspase-3
activation have been observed even at nanomolar
concentrations (14). The results showed that the
combination of cineole and AgNPs exerted the most
profound effects on the expression of Caspase 3 and NF-kB
genes in normal cells, suggesting it as the most effective
treatment to prevent OTA-induced cell death.

Significant changes in gene transcription related to
apoptosis were observed following OTA exposure (15).
ASK1 has been identified as a key regulator in the activation
of JNK and p38 pathways during oxidative and ER stress,
mediating OTA-induced cell death (22). Furthermore, OTA
increased the expression of inflammatory mediators such as
TNF-o and IL-6, implying the involvement of the NF-kB
pathway (23).

Several biological agents have been shown to counteract
OTA-induced damage by activating the Nrf2 pathway,
which protects against oxidative stress. Selenomethionine at
8 MM inhibited OTA-induced NLRP3 inflammasome
activation and pyroptosis (18). Li et al. (2021) demonstrated
that low-dose fumonisin B1 enhanced OTA-induced
nephrotoxicity and pro-apoptotic gene expression in PK-15
cells, which was mitigated by NAC and a JNK inhibitor
(SP600125). NAC reduced the expression of p-JNK, thereby
counteracting the combined toxin effects.

OTA also suppresses AKT, PI3K, and Bcl-2 pathways,
while increasing the expression of Caspase 3, Bax, and P53.
Selenium yeast improved antioxidant defense via activation
of the Nrf2/Keap1 pathway, reversing the downregulation of
Nrf2 target genes such as HO-1 and MnSOD (1). Huang et
al. (2021) also reported that OTA induces embryotoxicity by
disrupting mitochondrial membrane potential and activating
caspases, effects that were alleviated by liquiritigenin (24).

Flow cytometry confirmed that OTA increased apoptosis
and necrosis in HEK-293 cells. However, combination
treatment with cineole and AgNPs significantly reduced
apoptotic and necrotic events. Additionally, bioinspired
AgNPs disrupted membrane permeability in fungal cells and
inhibited OTA and aflatoxin synthesis at concentrations
below 8 pg/mL, while showing minimal toxicity toward
human fibroblasts (25).

AgNPs also cause surface protein and nucleic acid
damage and interfere with proton pumps (26). They generate
intracellular ROS, damage membrane proteins, and disrupt
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mitochondrial function, leading to apoptosis (13). AgNPs
alter the expression of genes related to the TCA cycle,
ergosterol  biosynthesis, and  lipid  metabolism,
compromising membrane integrity (23).

The present findings also hold significance beyond
human cell models. In poultry, OTA exposure has been
shown to impair kidney and liver function, disrupt immune
responses, and alter gene expression related to apoptosis and
inflammation (6, 27). Similar to human systems, activation
of Caspase-3 and NF-kB pathways has been implicated in
OTA-induced tissue damage in broiler chickens. Therefore,
the observed mitigating effects of green nano-cineole and
silver nanoparticles in the current study may provide a
scientific foundation for future in vivo experiments in avian
species. Such investigations could determine whether
nanoparticle-based strategies can be translated into practical
feed additives or therapeutic agents to reduce OTA-related
economic losses in the poultry sector.

OTA was also shown to disrupt meiotic spindle formation
and mitochondrial function, leading to oxidative stress,
apoptosis, and autophagy. Melatonin ameliorated these
effects and preserved oocyte integrity (28). Patial et al.
(2022) reported that sea buckthorn leaf extract protected
against OTA-induced renal damage in Japanese quail.
Bacillus subtilis fermentation extract also mitigated
oxidative stress, lipid peroxidation, and tissue damage
caused by OTA exposure (29).

5 Conclusion

There are a few studies have been undertaken on the
synergic impact of nanoparticles with phytochemicals on
mycotoxin toxicity in normal cells. Therefore, the current
work explored the combined effect of Ag-NPs with Cineole
on the toxicity induced by OTA in HEK-293 cell line. Our
paper The results indicated that green-synthesized AgNP,
cineole nanoparticles, and their combination form are
hazardous to normal HEK-293 cells. After treating normal
cells with OTA, the application of produced nanoparticles
and their combination resulted in enhanced survival of
normal cells and reduced toxicity induced by OTA. The
combination of AgNPs and cineole nanoparticles shows
promise for utilizing nanoparticles to improve mycotoxin-
induced toxicity in human cells. Additional research is
needed to enhance this combination and determine the best
application methods. Moreover, it is important to note that
ochratoxin A exerts similar nephrotoxic and pro-
inflammatory effects in a wide range of animal species,
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including poultry, where it has been shown to upregulate
inflammatory genes and impair kidney function. Therefore,
findings of the present study may also provide a basis for
future investigations on the potential use of nanoparticle-
based strategies to mitigate OTA-induced toxicity in poultry
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