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Avian Influenza is an important zoonotic viral disease affecting poultry and wild 

birds. Current prevention and control strategies are often ineffective, leading to 

significant economic losses and public health risks. This review highlights the 

role of Artificial Intelligence (AI) and Machine Learning (ML) in enhancing 

surveillance, early detection, and prediction of avian influenza infections in 

poultry. Various AI and ML techniques, including Gradient-boosted trees, 

Convolutional Neural Networks, and Sensor-Based Detection methods, have been 

applied to classify the pathogenicity of avian influenza virus strains, identify sick 

and deceased birds, and predict the likelihood of isolating avian influenza viruses 

in wild bird samples. These innovative solutions can offer high accuracy and 

efficiency in disease detection, reducing production expenses and enhancing 

animal welfare. Integrating AI and ML in poultry farming can improve disease 

management strategies, reduce zoonotic transmission risks, and safeguard global 

food security. This review provides insights into the current state of AI and ML 

applications in avian influenza detection and surveillance, highlighting their 

potential to transform the poultry industry toward a more efficient, sustainable, 

and healthier future. 
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1 Introduction 

vian Influenza is an important viral disease affecting 

domestic poultry and wild birds. In addition to causing 

significant damage to the poultry industry worldwide, it can 

transmit to various animal species and humans (1, 2). Highly 

Pathogenic Avian Influenza (HPAI) was one of the first viral 

diseases identified in the early 20th century due to its 

“filterable” nature (3); however, its close relationship with 

mammalian influenza viruses was not discovered until 1955 

(3, 4). Generally, the term “Avian Influenza” is broadly used 

to refer to any infection or disease associated with type A 

influenza viruses. The term "avian influenza viruses" 

describes type A influenza viruses typically detected in birds 

(1). 

Avian influenza viruses belong to Orthomyxoviridae, 

genus Influenza virus A (5). Different strains of influenza 

viruses (A-D) are classified into different genera (commonly 

referred to as "types") based on serological reactions shown 

in immunoprecipitation tests and agar gel immunodiffusion 

(AGID) or gene sequence analysis of the internal segments 

of the virus (6, 7). Wild waterfowl and other aquatic birds 

are the primary reservoirs for all type A influenza genes (8). 

Depending on the pathotype of the avian influenza virus (LP 

or HP), host characteristics (e.g., age, gender, …), and 

environmental factors, the clinical symptoms of the disease 

can substantially vary; however, the clinical signs of the 

disease are highly variable and depend on other factors such 

as host species, age, gender, concurrent infections, acquired 

immunity, and environmental factors (1, 9). 

There is no specific and practical treatment for avian 

influenza in industrial poultry. While using human antiviral 

drugs like amantadine can reduce mortality in affected flocks 

(10), it can lead to the development of resistance to these 

drugs, loss of their effectiveness, and endanger public health 

(11, 12). The main focus is currently on preventing and 

controlling highly pathogenic avian influenza outbreaks in 

industrial poultry flocks. This can be accomplished through 

timely disease detection, vaccination (13), and culling all 

affected birds and their biological products (1, 8). 

Given the vulnerability of broilers and layer pullets to 

various diseases and their fragile nature, it is essential to 

monitor chickens to spot signs of different disorders and 

prevent potential outbreaks. When depending on labor for 

farm supervision, a significant rise in the workforce is 

required to observe the birds closely and regularly, resulting 

in increased production expenses. Additionally, having more 

farm workers negatively impacts the environment of poultry 

and raises concerns about the employees' well-being, as 

some of these diseases are zoonotic and highly contagious 

(14). This highlights the significance of incorporating cost-

effective solutions. Monitoring technologies such as sensors, 

cameras, and microphones on poultry farms can 

substantially reduce human intervention in livestock 

management. This method enhances system efficiency and 

detects any diseases or behavioral issues in poultry. 

Machine Learning (ML) is a branch of Artificial 

Intelligence (AI) that can learn and adapt without following 

explicit instructions. In the last decade, ML has allowed the 

analysis of complex and large data sets to improve 

healthcare. Eleven percent of all ML systems that detect 

microorganisms specialize in parasitic infections (15). ML is 

used to predict animal health and disease status and has 

wide-scale applications in animal health, welfare, and 

veterinary sciences. Understanding the broader context of 

ML applications within infectious diseases is helpful. ML 

has proven to be an effective tool for collecting and 

analyzing large amounts of data in epidemiology and 

population health. 

Furthermore, it is useful for predicting outbreaks of 

diseases, as well as for performing disease surveillance. 

Additionally, ML is employed in the diagnosis and 

management of diseases, the recognition of behaviors, the 

management of the environment, and the evaluation of 

livestock growth (16-18). AI is increasingly used in digital 

pathology for tissue and cytological sample analysis and for 

storing and archiving cytological images. In this review 

article, we highlight some of the practical applications of ML 

in detecting and surveilling Avian influenza (19). 

1.1 Fundamentals of Neural Network 

In supervised learning, the computer receives training 

data along with known output values. In essence, the goal is 

to learn general rules (also called models) that map inputs to 

outputs so that the output can be predicted for unseen data 

with inputs that have been observed but no outputs. 

Supervised learning algorithms include Support Vector 

Machines (SVMs), boosted trees, and linear discriminant 

analyses (LDAs). Models for avian influenza are based on 

neural networks, which are included in supervised learning 

(20-23). 

With learning models, neural networks perform well 

when learning difficult tasks. Their use is growing across 

various fields, including infectious disease diagnosis and 

computer vision. Much like neurons in the brain, simple 

A 
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processors (neurons) in neural networks are heavily 

interconnected. They can function as distributed or 

massively parallel computers because of their inherent 

nature, which enables them to accelerate complex 

optimization tasks. The network mimics the human brain by 

learning, thinking, and acting by combining the states of 

neurons. Neural networks have an input layer, a hidden 

layer, and an output layer. Input layers receive the initial 

data. Hidden layers perform intermediary computations. To 

form feature hierarchies, higher-level features are combined 

with lower-level features. As neural networks have multiple 

hidden layers, they can learn complex patterns and data 

representations. The output layer produces the neural 

network's final prediction (20, 23-25). 

This study aims to investigate the integration of artificial 

intelligence, with a particular emphasis on machine learning 

and image processing techniques, in diagnosing and treating 

avian influenza. 

2 Material and Methods 

A literature search was conducted on October 3, 2023, 

across multiple electronic databases, including PubMed, 

Scopus, Web of Science, ResearchGate, Google Scholar, 

Elsevier, Scientific Information Database (SID), MagIran, 

and IranDoc. The search strategy employed a combination 

of keywords: “Machine Learning,” “Artificial Intelligence,” 

“Avian Influenza,” and “poultry,” adapted to the specific 

configurations of each database, with no restrictions on 

publication date. English keywords were utilized for 

PubMed, Scopus, Web of Science, and ResearchGate, while 

both English and their Persian equivalents were applied for 

Google Scholar, SID, and MagIran. All identified records 

from Persian keyword searches in Google Scholar, along 

with the first 100 English-language results sorted by the 

most relevant, were extracted. The remaining databases were 

comprehensively searched, and all results were retrieved. 

The extracted records were imported into an EndNote 

library, where duplicate entries were identified and removed, 

retaining unique citations. Two independent reviewers 

conducted a preliminary screening of titles and abstracts to 

assess eligibility based on predefined inclusion and 

exclusion criteria. Studies were included if they investigated 

AI-based methodologies for diagnosing or preventing avian 

influenza in poultry. Exclusions comprised articles lacking 

direct relevance to the search terms, those providing 

generalized or non-technical overviews of the topics, and 

publications deemed methodologically insufficient or 

lacking academic rigor. 

Following an initial screening, among 35 scientific 

articles, only 15 articles met the eligibility criteria. 

Discrepancies between reviewers regarding article inclusion 

were resolved through deliberative discussion to achieve 

consensus.  The 15 selected articles were carefully examined, 

and the key points of each were extracted. Considering the 

content of the discussion, all articles were reclassified, and 

the key points and discussion topics were integrated into the 

article's main text. This process ensured alignment with the 

research focus on AI-driven approaches to avian influenza 

management, prioritizing empirical studies with 

methodological coherence and applied relevance. 

3 Results 

Utilization of Artificial intelligence in avian influenza 

diagnosis 

In the results section, all selected articles were 

categorized according to the research methodology 

employed in their respective studies. It should be noted that 

some of these articles are unique due to their methodological 

approach and the novelty of their research topic, with no 

analogous counterparts existing in the literature. The table 

below organizes articles that employ artificial intelligence 

for the early detection and diagnosis of avian influenza. It 

includes the publication year, authors' names, and the 

methods used (Table 1). 

Table 1. Artificial intelligence (AI) is utilized in the early detection and diagnosis of avian influenza, sorted by the year of the publication, 

author's name, and integrated AI architecture. 

Reference Author(s) Date AI Technique(s) 

(26) Duan C, et al. 2023 Gradient-boosted trees, ML-driven surveillance strategies 

(27) Chadha A, et al. 2023 Logistic Regression (LR), Random Forest (RF), KNN, Naïve Bayes (NB), SVM, CNN 

(28) González-Recio O, et al. 2014 Machine Learning (ML) methods for genome-wide prediction (e.g., SVM, RF) 

(29) Huang J, et al. 2019 Sound analysis (Fast Fourier Transform, Discrete Wavelet Transform) 

(30) Bao Y, et al. 2021 Machine Learning (ML) algorithms for classification 

(31) Walsh DP, et al. 2019 Gradient-boosted trees, ML for viral isolation prediction 
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(32) Rizwan M, et al. 2016 Audio signal processing (unspecified ML) for rale sound detection 

(33) Sadeghi M, et al. 2023 Thermography with SVM, ANN, and Dempster-Shafer evidence theory 

(34) Banakar A, et al. 2016 Data-mining, Dempster-Shafer theory for sound-based disease diagnosis 

(35) Gulyaeva M, et al. 2020 Data mining, GIS, predictive modeling for LPAIV/HPAIV co-circulation 

(36) Yoo DS, et al. 2022 Random Forest (RF), Gradient Boosting Machine (GBM), XGBoost 

(37) Orandi JA, et al. 2023 Convolutional Neural Networks (CNNs) for posture-based detection 

(38) Valletta JJ, et al. 2017 Machine Learning (ML) applications in robotic surveillance 

(39) Astill J, et al. 2018 Surveillance technologies, Big Data analytics, and ML for outbreak prediction 

(40) Mbelwa H, et al. N/A† Deep Convolutional Neural Networks (CNNs), XceptionNet (pre-trained) 

 

3.1 Surveillance and early detection of HPAI 

The recent outbreaks of HPAI in wild birds have 

underscored the critical need for effective surveillance and 

early detection of this virus. To address this challenge, ML 

has emerged as a powerful tool for predicting the likelihood 

of isolating AIVs from wild bird surveillance samples. 

Gradient-boosted tree algorithms have proven to be 

particularly well-suited to this task, enabling us to explore 

the importance of various features for predicting the 

probability of AIV isolation and develop a model with high 

predictive power. Interestingly, some findings suggested 

that several traditional features used in wild bird 

surveillance, such as age, sex, and type of bird sampled, may 

not be as important as previously thought. This highlights 

the potential for ML to uncover novel insights and help 

identify features deemed of higher importance for predicting 

AIV isolation. By removing the less significant features, 

such as age, sex, and type of bird sampled, these studies were 

able to simplify their model without compromising its 

predictive power. Furthermore, these approaches have the 

potential to be used to predict AIV isolation in other species, 

as well as in other contexts (26, 41).  

3.2 Predictive analysis for pathogenicity classification of 

H5Nx avian influenza strains 

Various approaches can be used to infer the virulence and 

pathogenicity of H5Nx avian influenza strains in poultry, 

often involving identifying specific pathogenicity markers in 

their hemagglutinin (HA) gene. Predictive modeling 

techniques offer a promising method to explore the 

relationship between genetic characteristics and disease 

severity, aiding experts in assessing the pathogenicity of 

circulating AI viruses. A study aimed to evaluate different 

ML methods for predicting the pathogenicity of H5Nx 

viruses in poultry using complete HA gene sequences (27). 

Among 2137 annotated H5Nx HA gene sequences, 46.33% 

were classified as highly pathogenic (HP) and 53.67% as low 

pathogenic (LP) based on the presence of the polybasic HA 

cleavage site (HACS). By employing various ML classifiers 

such as Logistic Regression (LR), Random Forest (RF), K-

nearest Neighbor (KNN), Naïve Bayes (NB), Support 

Vector Machine (SVM), and Convolutional Neural Network 

(CNN), the study achieved approximately 99% accuracy in 

classifying pathogenicity through a 10-fold cross-validation 

approach. The results indicate that ML techniques can 

effectively classify H5 virus pathogenicity, with LR 

(L1/L2), KNN, SVM (RBF), and CNN classifiers showing 

the highest accuracies for aligned DNA and protein 

sequences. These findings suggest the potential of ML 

methods in routinely classifying the pathogenicity of H5Nx 

avian influenza viruses in poultry, especially when 

characteristic markers are present in the dataset (42). 

3.3 Sensor-based Detection method 

Numerous approaches exist for identifying deceased and 

unhealthy chickens using sound and image data, though they 

often fail to achieve optimal outcomes (29). A new study 

introduces a novel sensor-based detection method 

leveraging AI (30). The first step of this approach is 

measuring the maximum displacement of chicken 

movements by attaching a foot ring to each chicken and 

calculating the three-dimensional total variance to indicate 

activity intensity. After that, the detection terminal gathers 

data from the foot rings via a ZigBee network. ML 

algorithms are employed to classify the state of the chickens 

(alive, deceased, or unhealthy). This fusion of AI and sensor 

technology boasts high detection accuracy and brings about 

cost savings in operations. Practical trials reveal a system 

accuracy of 95.6% in identifying deceased and unhealthy 

chickens, with a 25% reduction in operating costs over four 

years compared to manual methods. This method can be 

used in the early detection of HPAI. 

https://jpsad.com
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3.4 Geographical Location and rRT-PCR as Key Predictors 

It has been applied to gradient-boosted trees, a type of 

ML, to assess the likelihood of detecting AIV in wild bird 

samples gathered during AIV surveillance conducted in the 

United States between 2006 and 2011. This analysis 

considered age, gender, bird species, location, and rRT-PCR 

results for the matrix gene. The finalized model 

demonstrated strong predictive capabilities and identified 

geographical location and rRT-PCR outcomes as key 

predictors. The model indicated higher probabilities of viral 

isolation in samples from the north-central states and the 

southeastern region of Alaska. Lower rRT-PCR Ct-values 

corresponded to a higher chance of AIV isolation, with the 

model estimating a 16% probability of detecting AIV in 

samples previously considered negative (Ct-value ≥35) 

according to the rRT-PCR screening test and standard 

protocols. This model can prioritize existing samples for 

isolation and efficiently assess AIV surveillance strategies to 

enhance the chances of viral detection within resource 

limitations and laboratory capacities (31). 

3.5 Early Detection Utilizing Thermography and Artificial 

Intelligence 

Non-invasive methods play a crucial role in precision 

farming for poultry, aiding in reducing stress and enabling 

ongoing monitoring (32). Poultry behavior can provide 

insights into their physical and mental well-being and overall 

health. Early detection of issues triggers timely actions. 

Sadeghi et al. utilized thermal imaging and ML to detect 

avian diseases (33). They studied four groups of 14-day-old 

Ross 308 Broilers (20 birds in each group). Two groups were 

deliberately infected with Newcastle Disease (ND) or Avian 

Influenza (AI), while the other two served as control groups. 

Thermal images were taken every 8 hours and analyzed 

using MATLAB. Following denoising and background 

removal, 23 statistical features were extracted, with the most 

relevant ones identified using an enhanced distance 

evaluation technique. Support Vector Machine (SVM) and 

Artificial Neural Networks (ANN) were utilized as 

classifiers, with SVM proving more effective in disease 

identification. All features with scores of 0.7 or higher were 

favorable for classification as Avian Influenza because there 

was a significant difference between 0.7 and other lower 

threshold limits in this study. When both classifiers fell short 

in accuracy, the Dempster-Shafer evidence theory was 

applied for data fusion. The final SVM-based system 

achieved impressive accuracy rates of 97.2% for AI and 

100% for ND classification within 24 hours post-infection. 

This novel approach presents a valuable method for 

promptly recognizing avian diseases and facilitating early 

intervention measures. While this study demonstrates 

promising accuracy in AI-driven thermography for avian 

disease detection (97.2% for AI, 100% for ND), the limited 

sample size (n=20 per group), controlled infection 

conditions, and reliance on specific feature thresholds (e.g., 

0.7) necessitate further validation in diverse, large-scale 

poultry populations. 

3.6 Detecting Avian Diseases with Sound Signals 

In the quest to improve poultry health, Banakar et al. have 

developed an automated disease detection system that 

benefits both production efficiency and animal welfare. 

Their intelligent device uses data-mining techniques and 

Dempster-Shafer evidence theory (D-S) to diagnose avian 

diseases. The study involved 14-day-old chickens divided 

into four groups: those deliberately infected with Newcastle 

Disease (ND), Infectious Bronchitis Virus (IBV), and Avian 

Influenza (AI), along with a control group. By analyzing 

chicken sounds using the Fast Fourier Transform (FFT) and 

Discrete Wavelet Transform (DWT), this innovative 

approach holds promise for early disease detection in poultry 

farming. Twenty-five statistical features from frequency 

domains and 75 from time-frequency domains were 

extracted. The most relevant sound signal features were 

selected using an improved distance evaluation (IDE) 

method. Chicken sounds were analyzed over two 

consecutive days after the virus infection. The breakthrough 

came with the D-S infusion of sound data, resulting in an 

impressive accuracy of 91.15% (34). 

3.7 Harmony and Hazards: Relation between Avian 

Influenza Viruses 

Co-circulation of avian viruses between low-pathogenic 

avian influenza viruses (LPAIVs) and high-pathogenic avian 

influenza viruses (HPAIVs) suggests their interactions in 

their ecological aspects. This hints at intriguing ecological 

interactions. Researchers took an international approach, 

focusing on the Pacific Rim. Gulyaeva et al. conducted data 

mining and used predictive modeling and ML alongside 

open-access datasets and geographic information systems 

(GIS). Zooming in on 5 km pixels, patterns have been 

discovered based on 157 hosts and 110 LPAIVs across 32 

species. Notably, Muscovy ducks, Mallards, Whistling 

Swans, and gulls dominated LPAIV prevalence, 
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emphasizing the industrial impact on the human-dominated 

wildlife contact zone (35). 

3.8 Predicting HPAI infections at individual poultry 

holdings 

Adapting the complex dynamics of transmission 

mechanisms and providing real-time risk estimation is 

challenging. Dae-sung Yoo et al. introduced a continuous 

risk prediction framework for predicting HPAI occurrences 

using machine learning algorithms (MLAs) to address this. 

This framework integrated data sources such as 

environmental, on-farm biosecurity, meteorological, vehicle 

movement tracking, and HPAI wild bird surveillance data to 

enhance accuracy and timeliness. The process involved 

generating 1788 predictors from six types of data, organizing 

them alongside an outcome variable in a data mart based on 

a temporal assumption, training these predictors with the 

outcome variable during the 2016–2017 HPAI epidemic, 

and using three MLAs (Random Forest, Gradient Boosting 

Machine, and eXtreme Gradient Boosting) to predict daily 

HPAI infection risks during the 2017–2018 epidemics. The 

models successfully identified 8–10 out of 19 high-risk 

infected premises in advance during the outbreak period. 

The Gradient Boosting Machine MLAs performed 

exceptionally well predicting HPAI infections at individual 

poultry holdings, achieving an AUC (area under the curve) 

of 0.88 for 7-day forecasting. This method improves the 

flexibility and timing of interventions against HPAI 

outbreaks on poultry farms (36). 

3.9 A Computer Vision System For Early Detection Of Sick 

Birds In A Poultry Farm Using Convolution Neural Network 

On Shape And Edge Information 

This research aimed to create a computer vision system 

that quickly identifies sick birds on a poultry farm, utilizing 

Convolutional Neural Networks (CNNs) to evaluate shape 

and edge features. This was accomplished by assembling a 

labeled dataset of sick and healthy birds. Training various 

models aimed to determine which features could most 

accurately predict a hen's health status based on its 

appearance. It was assumed that sick hens typically exhibit 

downward-stooping wings and tails and a weak neck that 

bends downwards. Images were captured using a camera and 

incorporated into four convolutional neural network models. 

Three of these models were developed using specific 

features extracted (ridges, edges, and Harris corners), while 

the fourth model was trained on the complete image without 

excluding any features. The models were then evaluated 

based on their predictive accuracy. 

The models were assessed based on their performance 

during training and their effectiveness on unseen data. The 

model utilizing Harris corners achieved the highest accuracy 

at 94.14%, whereas the model using the full set of features 

attained the lowest accuracy of 46.66%, respectively. The 

Harris corners model was subsequently used to create a web-

based system to predict the health status of hens on a poultry 

farm. This study successfully met its goal and demonstrated 

that it is feasible to classify healthy and sick birds based on 

a single feature (37). 

3.10  Robotic Surveillance 

In addition to traditional surveillance methods involving 

monitoring poultry through digital means, robotics has 

emerged as a potential tool for early disease detection. 

Several companies have developed robots designed to 

operate within poultry facilities, fulfilling various functions 

(38). These robots, typically autonomous small vehicles, can 

improve barn sanitation, boost chicken activity, and perform 

other tasks. One key function they can carry out is 

identifying severely ill or deceased chickens. Equipped with 

mounted cameras to capture multiple images quickly, these 

robots can identify unresponsive poultry that may be sick or 

deceased. This early detection capability allows for the 

prompt removal of avian influenza and other infectious 

diseases that have affected animals and investigation into the 

cause of death. By utilizing robots like these, the need for 

human monitoring of poultry for illness can be reduced, 

thereby lowering the risk of introducing infectious agents 

into the poultry facility. 

3.11  Introducing the best pre-trained CNNs for Chicken 

Diseases Detection: XceptionNet 

With the efforts of Hope Mbelwa et al., a deep learning 

approach has been presented utilizing Convolutional Neural 

Networks (CNNs) to determine whether chicken feces fall 

into one of the three categories defined by the model. Pre-

trained models have also been utilized to solve the same 

issue. The comparison demonstrates that the model based on 

XceptionNet outperforms all other models across all 

evaluated metrics. Experimental results indicate a clear 

advantage of transfer learning, with a validation accuracy of 

94% for the pre-trained model, compared to 93.67% for the 

fully trained CNNs developed on the same dataset. Overall, 

the fully trained CNNs rank second compared to the other 
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model. These findings suggest that the pre-trained 

XceptionNet method delivers superior performance and the 

highest prediction accuracy, making it well-suited for 

applications in chicken disease detection (40). 

4 Discussion 

This review sought to assess the existing and prospective 

uses of AI, with a particular focus on ML, in diagnosing and 

monitoring avian influenza within poultry populations. Our 

findings indicate that AI methodologies have demonstrated 

considerable potential to enhance early detection, facilitate 

real-time monitoring, and develop predictive models for 

outbreaks. ML algorithms have been successfully utilized 

for diagnostics based on imaging, interpretation of genomic 

data, and risk assessment mapping. Nevertheless, despite 

significant progress, challenges such as data quality, model 

interpretability, and the necessity for interdisciplinary 

collaboration continue to pose significant obstacles to wider 

implementation. 

In 2023, the financial turnover of artificial intelligence in 

animal health reached 1.2 billion dollars (28, 43). Utilizing 

this financial flow to improve health and poultry farming can 

contribute to the growth of the AI market and its ancillary 

products, advance the goals of poultry-related industries, and 

enhance global food security. Infectious bronchitis, 

coccidiosis, Newcastle disease, and salmonellosis have 

received more attention due to their significant economic 

impact and persistent occurrence in avian populations. These 

diseases, which manifest through changes in fecal 

appearance, body temperature, egg quality, and bird 

movement within the facility, can be clinically diagnosed 

using data collected from the facility environment. For 

instance, in the case of coccidiosis, where assessing infection 

severity relies on determining the number of sporulated 

oocysts in fecal samples, designing an AI-based automated 

model for oocyst counting can enhance speed and accuracy 

in detecting contamination levels and identifying accessible 

species (44). Additionally, datasets based on fecal variations 

in coccidiosis, Newcastle disease, and salmonellosis have 

been developed to achieve high-precision diagnosis (45). 

Using surveillance technologies and advanced analytical 

tools such as ML enables the extraction of valuable insights 

from complex data related to large poultry populations, 

offering crucial information about their health and infection 

status. Analyzing subtle changes in vocalization, activity, 

and physiology makes it feasible to detect poultry infections 

and diseases. These surveillance methods enable real-time 

tracking of poultry, facilitating the early identification of 

health issues. Additionally, point-of-care devices will enable 

swift determination of the presence of infectious diseases. 

This combination of early detection and rapid diagnostics 

empowers producers to respond promptly to infectious 

disease scenarios, reducing losses and preventing the spread 

of infections among birds. By minimizing the transmission 

of infectious agents within poultry, there is also a potential 

decrease in the risk of zoonotic transmission to humans, 

thereby mitigating the threat of outbreaks associated with the 

projected intensification of poultry production in the future 

(39). 

The application of artificial intelligence in avian 

influenza diagnosis encompasses diverse methodologies, 

each presenting distinct advantages and limitations. 

Supervised learning techniques, such as gradient-boosted 

trees, demonstrate high predictive power and feature 

prioritization, enabling model simplification and cross-

species applicability. However, their relegation of traditional 

variables like age and sex may challenge established 

surveillance paradigms. Predictive pathogenicity 

classification via ML classifiers achieves near-perfect 

accuracy by leveraging genetic markers like polybasic 

HACS yet risks overfitting and reduced generalizability in 

marker-absent contexts. Sensor-based systems offer real-

time, cost-efficient monitoring with high operational 

accuracy but face sensor dependency and data transmission 

reliability constraints. Geographical and rRT-PCR models 

enhance sample prioritization under resource limitations but 

exhibit geographical specificity and modest predictive 

probabilities for PCR-negative samples. Non-invasive 

approaches, such as thermography and sound analysis, 

enable stress-free early detection with high accuracy yet 

require controlled environmental conditions and complex 

feature extraction. Ecological data mining elucidates host-

virus interactions through GIS but is limited by regional data 

granularity and dataset completeness. Risk prediction 

frameworks integrate multimodal data for real-time 

forecasting with robust AUC performance but demand 

computational intensity and continuous data streams. 

Computer vision systems achieve high diagnostic accuracy 

via feature-specific CNNs, though their reliance on postural 

cues introduces variability in image-based generalization. 

Robotic surveillance reduces zoonotic risks through 

automation but incurs high infrastructural and maintenance 

costs. Finally, pre-trained CNNs like XceptionNet optimizes 

disease detection via transfer learning, yet depend on image 

quality and may lack scalability for emerging pathologies. 
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Collectively, these methods balance innovation with 

practical constraints, underscoring the need for context-

adaptive solutions in AI-driven avian influenza 

management. 

However, due to the unique nature and pathogenicity of 

avian influenza viruses, research efforts in preventing and 

diagnosing this disease often focus on laboratory-based 

detection using artificial intelligence. So far, the ability to 

accurately diagnose avian influenza at the farm level has not 

been fully realized. Clinical diagnosis of highly pathogenic 

avian influenza (HPAI) remains challenging for experts in 

the poultry field due to the rapid spread of the disease and 

high mortality rates among birds even before clinical 

symptoms appear. In contrast, low pathogenic avian 

influenza (LPAI), which exhibits greater clinical diagnostic 

capabilities than HPAI and allows for creating large datasets 

for various bird species (35), still requires further targeted 

research in this area. 

5 Future and prospects 

Artificial intelligence has become one of the most 

important technologies, and it is crucial that functional 

applications be developed that can benefit our daily lives and 

our careers. Diagnosis of avian influenza is not an exception, 

and the first steps of this path have been taken. As a result of 

recent developments, it is now easier to produce artificial 

intelligence-based applications with fewer datasets and 

higher accuracy. The transfer learning method, for example, 

is an efficient way of developing AI applications without 

integrating many datasets. Combined with integrating 

models and trained data, the dataset volume will be 

dramatically reduced (46). 

6 Conclusion 

Avian influenza is a significant viral disease affecting 

both domestic poultry and wild birds, potentially spreading 

to other animal species and humans. Current efforts focus on 

preventing and controlling HPAI outbreaks in industrial 

poultry through methods such as vaccination and culling. 

Advanced technologies like artificial intelligence, machine 

learning, and sensor-based detection methods are being 

leveraged to enhance surveillance, early detection, and 

predicting avian influenza infections in poultry. These 

technologies offer high accuracy in identifying sick and 

deceased birds, predicting the pathogenicity of avian 

influenza strains, and classifying the likelihood of isolating 

avian influenza viruses in wild bird samples. Using deep 

learning for disease classification in chickens aligns with an 

emerging trend where deep learning techniques find 

application across various agricultural tasks. This trend has 

the potential to significantly transform the livestock 

industry, impacting areas such as disease detection and yield 

forecasting (47). 

Incorporating AI into avian influenza diagnosis and 

prevention offers transformative benefits, including 

enhanced surveillance frameworks, predictive accuracy, and 

early detection capabilities. Machine Learning algorithms, 

such as gradient-boosted trees and Convolutional Neural 

Networks (CNNs), enable rapid analysis of complex 

datasets—ranging from genomic sequences to thermal 

imagery—facilitating real-time pathogenicity classification, 

outbreak prediction, and identification of high-risk 

geographical zones. AI-driven sensor systems and robotic 

surveillance automate non-invasive monitoring of poultry 

health, reducing reliance on labor-intensive methods while 

improving operational efficiency and cost-effectiveness. 

Predictive modeling optimizes resource allocation by 

prioritizing high-probability viral isolates and refining 

surveillance strategies under laboratory constraints. 

Additionally, AI can uncover non-traditional 

epidemiological markers, synthesize multimodal data (e.g., 

environmental, behavioral, and acoustic signals), support 

adaptive biosecurity protocols and preemptive interventions, 

and mitigate economic losses and zoonotic transmission 

risks. By transforming raw data into actionable insights, AI 

enhances diagnostic precision, accelerates response 

timelines, and strengthens global preparedness against avian 

influenza outbreaks. In an overview, by integrating AI and 

ML techniques in poultry farming, producers can improve 

disease management strategies, reduce production expenses, 

enhance animal welfare, and safeguard public health against 

zoonotic transmission risks. The continuous development 

and application of these innovative solutions in poultry 

health monitoring are crucial for the early detection of avian 

diseases and prompt intervention measures, ultimately 

safeguarding global food security and advancing the poultry 

industry toward a more efficient, sustainable, and healthier 

future (48). 
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